抛物型方程弱Galerkin有限元变时步BDF2隐式格式的收敛性分析

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED
Chenxing Li , Fuzheng Gao , Jintao Cui
{"title":"抛物型方程弱Galerkin有限元变时步BDF2隐式格式的收敛性分析","authors":"Chenxing Li ,&nbsp;Fuzheng Gao ,&nbsp;Jintao Cui","doi":"10.1016/j.apnum.2025.02.015","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we propose a fully discrete implicit method for parabolic problem. The variable-time-step BDF2 method is applied in time combining with the weak Galerkin finite element method in space. Optimal error estimates of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm are derived under the time-step ratio <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⩽</mo><mn>4.8645</mn></math></span>. Numerical experiments confirm the theoretical findings. Furthermore, an adaptive scheme is introduced and validated to enhance the computational performance.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"212 ","pages":"Pages 333-343"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convergence analysis of weak Galerkin finite element variable-time-step BDF2 implicit scheme for parabolic equations\",\"authors\":\"Chenxing Li ,&nbsp;Fuzheng Gao ,&nbsp;Jintao Cui\",\"doi\":\"10.1016/j.apnum.2025.02.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we propose a fully discrete implicit method for parabolic problem. The variable-time-step BDF2 method is applied in time combining with the weak Galerkin finite element method in space. Optimal error estimates of <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>r</mi></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-norm and <span><math><mi>O</mi><mo>(</mo><msup><mrow><mi>h</mi></mrow><mrow><mi>r</mi><mo>+</mo><mn>1</mn></mrow></msup><mo>+</mo><msup><mrow><mi>τ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></math></span> in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-norm are derived under the time-step ratio <span><math><mn>0</mn><mo>&lt;</mo><msub><mrow><mi>r</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>⩽</mo><mn>4.8645</mn></math></span>. Numerical experiments confirm the theoretical findings. Furthermore, an adaptive scheme is introduced and validated to enhance the computational performance.</div></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"212 \",\"pages\":\"Pages 333-343\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2025-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927425000455\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927425000455","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了求解抛物型问题的一种完全离散隐式方法。在时间上采用变时间步长BDF2方法,在空间上采用弱伽辽金有限元法。在时间步长比为0<;rk≤4.8645的条件下,得到了h1 -范数0 (hr+τ2)和l2 -范数0 (hr+1+τ2)的最优误差估计。数值实验证实了理论结果。在此基础上,提出了一种自适应算法,并进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence analysis of weak Galerkin finite element variable-time-step BDF2 implicit scheme for parabolic equations
In this paper, we propose a fully discrete implicit method for parabolic problem. The variable-time-step BDF2 method is applied in time combining with the weak Galerkin finite element method in space. Optimal error estimates of O(hr+τ2) in H1-norm and O(hr+1+τ2) in L2-norm are derived under the time-step ratio 0<rk4.8645. Numerical experiments confirm the theoretical findings. Furthermore, an adaptive scheme is introduced and validated to enhance the computational performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信