{"title":"Oral Astringency in Plant Proteins: An Underestimated Issue in Formulating Next-Generation Plant-Based Foods.","authors":"Anwesha Sarkar","doi":"10.1146/annurev-food-072023-034510","DOIUrl":"10.1146/annurev-food-072023-034510","url":null,"abstract":"<p><p>Ensuring the supply of affordable, palatable, healthy, and sustainable nutrients to feed the growing population without transgressing the planetary boundaries remains a key challenge in the food science community. A dietary transition toward low-emission, plant-based foods, with less reliance on animal agriculture, is advocated for sustainability, health, and ethical reasons. A major hurdle for mainstream adoption of plant-based foods is their poor sensorial performance, such as nonjuicy and astringent textures as well as various off-flavors. This review presents the current understanding of astringency and oral friction of plant-based foods. It focuses on plant proteins and their application in plant-based meat and dairy analogs. In addition, the latest advances in the quantitative characterization of astringency using tribology, electrochemistry, and cellular tools are covered. Finally, we examine factors influencing astringency and propose easy-to-implement colloidal strategies that may mitigate astringency issues, thereby underpinning the design of the next generation of sustainable and pleasurable plant-based foods.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"103-123"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yamina De Bondt, Celine Verdonck, Markus J Brandt, Luc De Vuyst, Michael G Gänzle, Marco Gobbetti, Emanuele Zannini, Christophe M Courtin
{"title":"Wheat Sourdough Breadmaking: A Scoping Review.","authors":"Yamina De Bondt, Celine Verdonck, Markus J Brandt, Luc De Vuyst, Michael G Gänzle, Marco Gobbetti, Emanuele Zannini, Christophe M Courtin","doi":"10.1146/annurev-food-110923-034834","DOIUrl":"10.1146/annurev-food-110923-034834","url":null,"abstract":"<p><p>Using sourdough in breadmaking can enhance bread's shelf-life and flavor compared to exclusive baker's yeast use and is believed to increase its nutritional quality and healthiness. Previous research established insight into the microbial ecology of sourdough, but the link between leavening agent use, processing, and bread quality remains elusive. However, such knowledge is key for standardization, research on the health benefits, and the definition of sourdough bread. In this systematic scoping review, we analyzed 253 studies and identified large variations in the type and amount of leavening agent, fermentation conditions, and bread quality (specific loaf volume and acidification). The interrelation between these elements and their effect on the extent of fermentation is discussed, together with issues preventing proper comparison of breadmaking procedures. With this review, we want to contribute to the dialogue concerning the definition of sourdough-type bread products and the research into the health benefits attributed to them.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"265-282"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139563155","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael G Gänzle, Ludovic Monnin, Jinshui Zheng, Lingxiao Zhang, Monika Coton, Delphine Sicard, Jens Walter
{"title":"Starter Culture Development and Innovation for Novel Fermented Foods.","authors":"Michael G Gänzle, Ludovic Monnin, Jinshui Zheng, Lingxiao Zhang, Monika Coton, Delphine Sicard, Jens Walter","doi":"10.1146/annurev-food-072023-034207","DOIUrl":"10.1146/annurev-food-072023-034207","url":null,"abstract":"<p><p>Interest in fermented foods is increasing because fermented foods are promising solutions for more secure food systems with an increased proportion of minimally processed plant foods and a smaller environmental footprint. These developments also pertain to novel fermented food for which no traditional template exists, raising the question of how to develop starter cultures for such fermentations. This review establishes a framework that integrates traditional and scientific knowledge systems for the selection of suitable cultures. Safety considerations, the use of organisms in traditional food fermentations, and the link of phylogeny to metabolic properties provide criteria for culture selection. Such approaches can also select for microbial strains that have health benefits. A science-based approach to the development of novel fermented foods can substantially advance their value through more secure food systems, food products that provide health-promoting microbes, and the provision of foods that improve human health.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"211-239"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138486516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nonconventional Technologies in Lipid Modifications.","authors":"Eng-Tong Phuah, Yee-Ying Lee, Teck-Kim Tang, Casimir Akoh, Ling-Zhi Cheong, Chin-Ping Tan, Yong Wang, Oi-Ming Lai","doi":"10.1146/annurev-food-072023-034440","DOIUrl":"10.1146/annurev-food-072023-034440","url":null,"abstract":"<p><p>Lipid modifications play a crucial role in various fields, including food science, pharmaceuticals, and biofuel production. Traditional methods for lipid modifications involve physical and chemical approaches or enzymatic reactions, which often have limitations in terms of specificity, efficiency, and environmental impact. In recent years, nonconventional technologies have emerged as promising alternatives for lipid modifications. This review provides a comprehensive overview of nonconventional technologies for lipid modifications, including high-pressure processing, pulsed electric fields, ultrasound, ozonation, and cold plasma technology. The principles,mechanisms, and advantages of these technologies are discussed, along with their applications in lipid modification processes. Additionally, the challenges and future perspectives of nonconventional technologies in lipid modifications are addressed, highlighting the potential and challenges for further advancements in this field. The integration of nonconventional technologies with traditional methods has the potential to revolutionize lipid modifications, enabling the development of novel lipid-based products with enhanced functional properties and improved sustainability profiles.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"409-430"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138884009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xinyi Cheng, Chenyu Jiang, Jun Jin, Qingzhe Jin, Casimir C Akoh, Wei Wei, Xingguo Wang
{"title":"Medium- and Long-Chain Triacylglycerol: Preparation, Health Benefits, and Food Utilization.","authors":"Xinyi Cheng, Chenyu Jiang, Jun Jin, Qingzhe Jin, Casimir C Akoh, Wei Wei, Xingguo Wang","doi":"10.1146/annurev-food-072023-034539","DOIUrl":"10.1146/annurev-food-072023-034539","url":null,"abstract":"<p><p>Medium- and long-chain triacylglycerol (MLCT) is a structured lipid with both medium- and long-chain fatty acids in one triacylglycerol molecule. Compared with long-chain triacylglycerol (LCT), which is mainly present in common edible oils, and the physical blend of medium-chain triacylglycerol with LCT (MCT/LCT), MLCT has different physicochemical properties, metabolic characteristics, and nutritional values. In this article, the recent advances in the use of MLCT in food formulations are reviewed. The natural sources and preparation of MLCT are discussed. A comprehensive summary of MLCT digestion, absorption, transport, and oxidation is provided as well as its health benefits, including reducing the risk of overweight, hypolipidemic and hypoglycemic effects, etc. The potential MLCT uses in food formulations, such as infant formulas, healthy foods for weight loss, and sports foods, are summarized. Finally, the current safety assessment and regulatory status of MLCT in food formulations are reviewed.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"381-408"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139490681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Berries as Foods: Processing, Products, and Health Implications.","authors":"José Miguel Aguilera","doi":"10.1146/annurev-food-072023-034248","DOIUrl":"10.1146/annurev-food-072023-034248","url":null,"abstract":"<p><p>Berries are highly regarded as flavorful and healthy fruits that may prevent or delay some chronic diseases attributed to oxidative stress and inflammation. Berries are low in calories and harbor diverse bioactive phytochemicals, antioxidants, dietary fibers, and vitamins. This review delves into the main characteristics of fresh berries and berry products as foods and the technologies associated with their production. The main effects of processing operations and related variables on bioactive components and antioxidants are described. This review critically discusses why some health claims based on in vitro antioxidant data and clinical studies and intervention trials are difficult to assess. The review suggests that the beneficial health effects of berries are derived from a multifactorial combination of complex mixtures of abundant phenolic components, antioxidants, and their metabolites acting synergistically or additively with other nutrients like fibers and vitamins and possibly by modulating the gut microbiota.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"1-26"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138290095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Next-Generation Plant-Based Foods: Challenges and Opportunities.","authors":"David Julian McClements, Lutz Grossmann","doi":"10.1146/annurev-food-072023-034414","DOIUrl":"10.1146/annurev-food-072023-034414","url":null,"abstract":"<p><p>Owing to environmental, ethical, health, and safety concerns, there has been considerable interest in replacing traditional animal-sourced foods like meat, seafood, egg, and dairy products with next-generation plant-based analogs that accurately mimic their properties. Numerous plant-based foods have already been successfully introduced to the market, but there are still several challenges that must be overcome before they are adopted by more consumers. In this article, we review the current status of the science behind the development of next-generation plant-based foods and highlight areas where further research is needed to improve their quality, increase their variety, and reduce their cost, including improving ingredient performance, developing innovative processing methods, establishing structure-function relationships, and improving nutritional profiles.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"79-101"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107590089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Next Food Revolution Is Here: Recombinant Microbial Production of Milk and Egg Proteins by Precision Fermentation.","authors":"M B Nielsen, A S Meyer, J Arnau","doi":"10.1146/annurev-food-072023-034256","DOIUrl":"10.1146/annurev-food-072023-034256","url":null,"abstract":"<p><p>Animal-based agriculture and the production of protein-rich foods from animals, particularly from ruminants, are not sustainable and have serious climate effects. A new type of alternative proteins is now on the menu, namely animal proteins produced recombinantly by microbial fermentation. This new technology, precision fermentation, is projected to completely disrupt traditional animal-based agriculture. Certain milk and egg proteins along with specific meat substitute analog components produced by precision fermentation are already entering the market. This first wave of precision fermentation products targets the use of these proteins as protein additives, and several commercial players are already active in the field. The cost-efficiency requirements involve production titers above 50 g/L which are several orders of magnitude higher than those for pharmaceutical protein manufacture, making strain engineering, process optimization, and scale-up critical success factors. This new development within alternative proteins defines a new research direction integrating biotechnology, process engineering, and sustainable food protein production.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"173-187"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138884011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication, Functional Properties, and Potential Applications of Mixed Gellan-Polysaccharide Systems: A Review.","authors":"Bowen Yan, Tiantian Chen, Yuan Tao, Nana Zhang, Jianxin Zhao, Hao Zhang, Wei Chen, Daming Fan","doi":"10.1146/annurev-food-072023-034318","DOIUrl":"10.1146/annurev-food-072023-034318","url":null,"abstract":"<p><p>Gellan, an anionic heteropolysaccharide synthesized by <i>Sphingomonas elodea</i>, is an excellent gelling agent. However, its poor mechanical strength and high gelling temperature limit its application. Recent studies have reported that combining gellan with other polysaccharides achieves desirable properties for food- and biomaterial-related applications. This review summarizes the fabrication methods, functional properties, and potential applications of gellan-polysaccharide systems. Starch, pectin, xanthan gum, and konjac glucomannan are the most widely used polysaccharides in these composite systems. Heating-cooling and ionic-induced cross-linking approaches have been used in the fabrication of these systems. Composite gels fabricated using gellan and various polysaccharides exhibit different functional properties, possibly because of their distinct molecular interactions. In terms of applications, mixed gellan-polysaccharide systems have been extensively used in texture modification, edible coatings and films, bioactive component delivery, and tissue-engineering applications. Further scientific studies, including structural determinations of mixed systems, optimization of processing methods, and expansion of applications in food-related fields, are needed.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"151-172"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71420175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elisabetta Esposito, Alessandra Pecorelli, Francesca Ferrara, Mary Ann Lila, Giuseppe Valacchi
{"title":"Feeding the Body Through the Skin: Ethosomes and Transethosomes as a New Topical Delivery System for Bioactive Compounds.","authors":"Elisabetta Esposito, Alessandra Pecorelli, Francesca Ferrara, Mary Ann Lila, Giuseppe Valacchi","doi":"10.1146/annurev-food-072023-034528","DOIUrl":"10.1146/annurev-food-072023-034528","url":null,"abstract":"<p><p>Because the feeding of our body through the oral route can be associated with many drawbacks due to the degradation of natural molecules during transit in the gastrointestinal tract, a transdermal delivery strategy, usually employed in the pharmaceutical field, can present an effective alternative for delivery of bioactives and nutrients from foods. In this review, the chance to feed the body with nutritive and bioactive molecules from food through transdermal administration is discussed. Various nanotechnological devices employed for topical and transdermal delivery of bioactive compounds are described. In addition, mechanisms underlying their potential use in the delivery of nutritive molecules, as well as their capability to efficaciously reach the dermis and promote systemic distribution, are detailed.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"15 1","pages":"53-78"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}