{"title":"Next-Generation Plant-Based Foods: Challenges and Opportunities.","authors":"David Julian McClements, Lutz Grossmann","doi":"10.1146/annurev-food-072023-034414","DOIUrl":"10.1146/annurev-food-072023-034414","url":null,"abstract":"<p><p>Owing to environmental, ethical, health, and safety concerns, there has been considerable interest in replacing traditional animal-sourced foods like meat, seafood, egg, and dairy products with next-generation plant-based analogs that accurately mimic their properties. Numerous plant-based foods have already been successfully introduced to the market, but there are still several challenges that must be overcome before they are adopted by more consumers. In this article, we review the current status of the science behind the development of next-generation plant-based foods and highlight areas where further research is needed to improve their quality, increase their variety, and reduce their cost, including improving ingredient performance, developing innovative processing methods, establishing structure-function relationships, and improving nutritional profiles.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"79-101"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"107590089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Next Food Revolution Is Here: Recombinant Microbial Production of Milk and Egg Proteins by Precision Fermentation.","authors":"M B Nielsen, A S Meyer, J Arnau","doi":"10.1146/annurev-food-072023-034256","DOIUrl":"10.1146/annurev-food-072023-034256","url":null,"abstract":"<p><p>Animal-based agriculture and the production of protein-rich foods from animals, particularly from ruminants, are not sustainable and have serious climate effects. A new type of alternative proteins is now on the menu, namely animal proteins produced recombinantly by microbial fermentation. This new technology, precision fermentation, is projected to completely disrupt traditional animal-based agriculture. Certain milk and egg proteins along with specific meat substitute analog components produced by precision fermentation are already entering the market. This first wave of precision fermentation products targets the use of these proteins as protein additives, and several commercial players are already active in the field. The cost-efficiency requirements involve production titers above 50 g/L which are several orders of magnitude higher than those for pharmaceutical protein manufacture, making strain engineering, process optimization, and scale-up critical success factors. This new development within alternative proteins defines a new research direction integrating biotechnology, process engineering, and sustainable food protein production.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"173-187"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138884011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication, Functional Properties, and Potential Applications of Mixed Gellan-Polysaccharide Systems: A Review.","authors":"Bowen Yan, Tiantian Chen, Yuan Tao, Nana Zhang, Jianxin Zhao, Hao Zhang, Wei Chen, Daming Fan","doi":"10.1146/annurev-food-072023-034318","DOIUrl":"10.1146/annurev-food-072023-034318","url":null,"abstract":"<p><p>Gellan, an anionic heteropolysaccharide synthesized by <i>Sphingomonas elodea</i>, is an excellent gelling agent. However, its poor mechanical strength and high gelling temperature limit its application. Recent studies have reported that combining gellan with other polysaccharides achieves desirable properties for food- and biomaterial-related applications. This review summarizes the fabrication methods, functional properties, and potential applications of gellan-polysaccharide systems. Starch, pectin, xanthan gum, and konjac glucomannan are the most widely used polysaccharides in these composite systems. Heating-cooling and ionic-induced cross-linking approaches have been used in the fabrication of these systems. Composite gels fabricated using gellan and various polysaccharides exhibit different functional properties, possibly because of their distinct molecular interactions. In terms of applications, mixed gellan-polysaccharide systems have been extensively used in texture modification, edible coatings and films, bioactive component delivery, and tissue-engineering applications. Further scientific studies, including structural determinations of mixed systems, optimization of processing methods, and expansion of applications in food-related fields, are needed.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"151-172"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71420175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elisabetta Esposito, Alessandra Pecorelli, Francesca Ferrara, Mary Ann Lila, Giuseppe Valacchi
{"title":"Feeding the Body Through the Skin: Ethosomes and Transethosomes as a New Topical Delivery System for Bioactive Compounds.","authors":"Elisabetta Esposito, Alessandra Pecorelli, Francesca Ferrara, Mary Ann Lila, Giuseppe Valacchi","doi":"10.1146/annurev-food-072023-034528","DOIUrl":"10.1146/annurev-food-072023-034528","url":null,"abstract":"<p><p>Because the feeding of our body through the oral route can be associated with many drawbacks due to the degradation of natural molecules during transit in the gastrointestinal tract, a transdermal delivery strategy, usually employed in the pharmaceutical field, can present an effective alternative for delivery of bioactives and nutrients from foods. In this review, the chance to feed the body with nutritive and bioactive molecules from food through transdermal administration is discussed. Various nanotechnological devices employed for topical and transdermal delivery of bioactive compounds are described. In addition, mechanisms underlying their potential use in the delivery of nutritive molecules, as well as their capability to efficaciously reach the dermis and promote systemic distribution, are detailed.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"15 1","pages":"53-78"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141465757","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Moisture Extrusion of Plant Proteins: Fundamentals of Texturization and Applications.","authors":"Xiaonan Sui, Tianyi Zhang, Xin Zhang, Lianzhou Jiang","doi":"10.1146/annurev-food-072023-034346","DOIUrl":"10.1146/annurev-food-072023-034346","url":null,"abstract":"<p><p>The growing demand for sustainable and healthy food alternatives has led to a significant increase in interest in plant-based protein products. Among the various techniques used in creating meat analogs, high-moisture extrusion (HME) stands out as a promising technology for developing plant-based protein products that possess desirable texture and mouthfeel. During the extrusion process, plant proteins undergo a state transition, causing their rheological properties to change, thereby influencing the quality of the final extrudates. This review aims to delve into the fundamental aspects of texturizing plant proteins using HME, with a specific focus on the rheological behavior exhibited by these proteins throughout the process. Additionally, the review explores the future of HME from the perspective of novel raw materials and technologies. In summary, the objective of this review is to provide a comprehensive understanding of the potential of HME technology in the development of sustainable and nutritious plant-based protein products.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":"125-149"},"PeriodicalIF":10.6,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tessa S. Canoy, Emma Schack Wiedenbein, Wender L.P. Bredie, Anne S. Meyer, Han A.B. Wösten, Dennis Sandris Nielsen
{"title":"Solid-State Fermented Plant Foods as New Protein Sources","authors":"Tessa S. Canoy, Emma Schack Wiedenbein, Wender L.P. Bredie, Anne S. Meyer, Han A.B. Wösten, Dennis Sandris Nielsen","doi":"10.1146/annurev-food-060721-013526","DOIUrl":"https://doi.org/10.1146/annurev-food-060721-013526","url":null,"abstract":"The current animal-based production of protein-rich foods is unsustainable, especially in light of continued population growth. New alternative proteinaceous foods are therefore required. Solid-state fermented plant foods from Africa and Asia include several mold- and Bacillus-fermented foods such as tempeh, sufu, and natto. These fermentations improve the protein digestibility of the plant food materials while also creating unique textures, flavors, and taste sensations. Understanding the nature of these transformations is of crucial interest to inspire the development of new plant-protein foods. In this review, we describe the conversions taking place in the plant food matrix as a result of these solid-state fermentations. We also summarize how these (nonlactic) plant food fermentations can lead to desirable flavor properties, such as kokumi and umami sensations, and improve the protein quality by removing antinutritional factors and producing additional essential amino acids in these foods.Expected final online publication date for the Annual Review of Food Science and Technology, Volume 15 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"64 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138742122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Strategies to Reduce Fossil Fuel Use in Food Manufacturing","authors":"Lutz Grossmann, Sergiy Smetana, Serafim Bakalis","doi":"10.1146/annurev-food-072023-034332","DOIUrl":"https://doi.org/10.1146/annurev-food-072023-034332","url":null,"abstract":"Our food production relies on the input of fossil fuels to create the high variety of different food products currently on the market. This reliance has caused challenges due to the inherent emissions generated by the combustion of fossil fuels and the dependence of many countries on only a small number of fossil fuel suppliers. This review aims to look at these challenges and discusses several mitigation strategies to reduce the usage of fossil fuels in the food processing part of the food value chain. In this specific step, there is substantial potential to change the type of energy that is used to transform the raw materials into an edible food matrix because the operations mainly include processes that rely often on natural gas for heating and electricity that is used for machine operation and cooling. Both energy sources can be replaced by clean and renewable alternatives, especially with alternative heating options such as geothermal heating and electrical boilers being installed and offered more frequently. However, short-term solutions like energy reduction through process optimization and the integration of smart sensors can also help to reduce the overall energy use in the short term. These strategies are outlined in this review along with in-depth analyses of the types of energy used in food processing, the available clean and renewable energy technologies that do not rely on fossil fuels, and the current hurdles and limitations. It becomes evident that most of the required technologies are already available on the market and that considerable investments are necessary to implement a comprehensive energy strategy that does not rely on fossil fuels in food manufacturing.Expected final online publication date for the Annual Review of Food Science and Technology, Volume 15 is April 2024. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"113 1","pages":""},"PeriodicalIF":12.4,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138559965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enzymatic Approaches for Structuring Starch to Improve Functionality.","authors":"Ming Miao, James N BeMiller","doi":"10.1146/annurev-food-072122-023510","DOIUrl":"https://doi.org/10.1146/annurev-food-072122-023510","url":null,"abstract":"<p><p>Starch is one of the most abundant renewable biopolymers in nature and is the main constituent in the human diet and a raw material for the food industry. Native starches are limited in most industrial applications and often tailored by structural modification to enhance desirable attributes, minimize undesirable attributes, or create new attributes. Enzymatic approaches for structuring starch have become of interest to the food industry precisely because the reactions minimize the formation of undesirable by-products and coproducts and are therefore considered environmentally friendly methods for producing clean-label starches with better behavioral characteristics. Starches with improved functionalities for various applications are produced via enzyme hydrolysis and transfer reactions. Use of novel, multifunctional, starch-active enzymes to alter the structures of amylose and/or amylopectin molecules, and thus alter the starch's physiochemical attributes in a predictable and controllable manner, has been explored. This review provides state-of-the-art information on exploiting glycosyl transferases and glycosyl hydrolases for structuring starch to improve its functionalities. The characteristics of starch-active enzymes (including branching enzymes, amylomaltases, GH70 α-transglycosylases, amylosucrases, maltogenic amylases, cyclomaltodextrinases, neopullulanases, and maltooligosaccharide-forming amylases), structure-functionality-driven processing strategies, novel conversion products, and potential industrial applications are discussed.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"14 ","pages":"271-295"},"PeriodicalIF":12.4,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9189963","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Guillermo Ortiz Charneco, Paul P de Waal, Irma M H van Rijswijck, Noël N M E van Peij, Douwe van Sinderen, Jennifer Mahony
{"title":"Bacteriophages in the Dairy Industry: A Problem Solved?","authors":"Guillermo Ortiz Charneco, Paul P de Waal, Irma M H van Rijswijck, Noël N M E van Peij, Douwe van Sinderen, Jennifer Mahony","doi":"10.1146/annurev-food-060721-015928","DOIUrl":"https://doi.org/10.1146/annurev-food-060721-015928","url":null,"abstract":"<p><p>Bacteriophages (or phages) represent one of the most persistent threats to food fermentations, particularly large-scale commercial dairy fermentations. Phages infecting lactic acid bacteria (LAB) that are used as starter cultures in dairy fermentations are well studied, and in recent years there have been significant advances in defining the driving forces of LAB-phage coevolution. The means by which different starter bacterial species defend themselves against phage predation and the chromosomal or plasmid location of the genes encoding these defense mechanisms have dictated the technological approaches for the development of robust starter cultures. In this review, we highlight recent advances in defining phage-host interactions and how phage resistance occurs in different bacterial species. Furthermore, we discuss how these insights continue to transform the dairy fermentation industry and how they also are anticipated to guide food fermentations involving plant-based alternatives in the future.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"14 ","pages":"367-385"},"PeriodicalIF":12.4,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9194930","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Predicting Personalized Responses to Dietary Fiber Interventions: Opportunities for Modulation of the Gut Microbiome to Improve Health.","authors":"Car Reen Kok, Devin Rose, Robert Hutkins","doi":"10.1146/annurev-food-060721-015516","DOIUrl":"https://doi.org/10.1146/annurev-food-060721-015516","url":null,"abstract":"<p><p>Inadequate dietary fiber consumption has become common across industrialized nations, accompanied by changes in gut microbial composition and a dramatic increase in chronic metabolic diseases. The human gut microbiome harbors genes that are required for the digestion of fiber, resulting in the production of end products that mediate gastrointestinal and systemic benefits to the host. Thus, the use of fiber interventions has attracted increasing interest as a strategy to modulate the gut microbiome and improve human health. However, considerable interindividual differences in gut microbial composition have resulted in variable responses toward fiber interventions. This variability has led to observed nonresponder individuals and highlights the need for personalized approaches to effectively redirect the gut ecosystem. In this review, we summarize strategies used to address the responder and nonresponder phenomenon in dietary fiber interventions and propose a targeted approach to identify predictive features based on knowledge of fiber metabolism and machine learning approaches.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":"14 ","pages":"157-182"},"PeriodicalIF":12.4,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9194944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}