{"title":"148765","authors":"","doi":"10.24425/aoa.2024.148765","DOIUrl":"https://doi.org/10.24425/aoa.2024.148765","url":null,"abstract":"","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"136 37","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138598646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"148764","authors":"","doi":"10.24425/aoa.2023.148764","DOIUrl":"https://doi.org/10.24425/aoa.2023.148764","url":null,"abstract":"","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"89 12","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138600353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Algorithm for Computationally Efficient Imaging of Sound Speed in Conventional Ultrasound Sonography","authors":"","doi":"10.24425/aoa.2023.146815","DOIUrl":"https://doi.org/10.24425/aoa.2023.146815","url":null,"abstract":"","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"45 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139214748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Morkun, N. Morkun, V. Tron, O. Serdiuk, A. Haponenko
{"title":"Evaluation of the Sedimentation Process in the Thickener by Using the Parameters of Longitudinal Ultrasonic Oscillations and Lamb Waves","authors":"V. Morkun, N. Morkun, V. Tron, O. Serdiuk, A. Haponenko","doi":"10.24425/aoa.2023.146819","DOIUrl":"https://doi.org/10.24425/aoa.2023.146819","url":null,"abstract":"Water is widely used in the mining industry, particularly in mineral enrichment processes. In the process of magnetic separation or flotation of crushed ore, a concentrate (an enriched product), and tailings (a product with a low content of a useful component) are obtained. One of the main tasks of enrichment processes is the efficient use of water resources. This is achieved by reclaiming and subsequent reusing water contained in ore beneficiation products by extracting it in industrial thickeners. Optimizing this process makes it possible to reduce water usage in the mining industry, reduce costs of mineral enrichment processes, and address extremely urgent environmental protection problems. To evaluate the process of sedimentation of the solid phase in the pulp within the thickener, measurements of parameters of longitudinal ultrasonic oscillations and Lamb waves that have traveled a fixed distance in the pulp and along the measuring surface in contact with it are used. The proposed approach allows for the consideration of pulp density, particle size of the solid phase in the ore material and the dynamics of changes in these parameters in the thickener at the initial stage of the sedimentation process. Based on the obtained values, adjustments can be made to the characteristics of its initial product, leading to reduced water usage and minimized loss of a useful component.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"6 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139209838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grzegorz Szczepański, Marlena Podlesna, Leszek Morzynski, Anna Włudarczyk
{"title":"Investigation of the Acoustic Properties of a Metamaterial with a Multi-Ring Structure","authors":"Grzegorz Szczepański, Marlena Podlesna, Leszek Morzynski, Anna Włudarczyk","doi":"10.24425/aoa.2023.146814","DOIUrl":"https://doi.org/10.24425/aoa.2023.146814","url":null,"abstract":"In this article, the authors present the geometry and measurements of the properties of an acoustic meta-material with a structure composed of multiple concentric rings. CAD models of the structure were developed and subsequently used in numerical studies, which included the study of resonant frequencies using the Lanczos method and an analysis of sound pressure level distribution under plane wave excitation using the finite element method. Subsequently, experimental tests were carried out on models with the same geometry produced with three different materials (PLA, PET-G, and FLEX) using a fused deposition modeling 3D printing technique. These tests included: determining insertion loss for a single model based on tests using the measurement window of a reverberation chamber and determining transmission loss through tests in a semi-anechoic chamber. Sound wave resonance was obtained for frequencies ranging from 1700 to 6000 Hz. Notably, the experimental studies were carried out for the same structure for which numerical tests were conducted. The physical models of a metamaterial were manufactured using three different readily available 3D printing materials. The results of laboratory tests confirm that the created acoustic metamaterial consisting of multi-ring structures reduces noise in medium and high frequencies.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"4 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139213440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Laboratory Tests and Numerical Simulations of Two Anti-Vibration Structures Made by 3D Printing – Comparative Research","authors":"Piotr Kowalski, Adrian Alikowski","doi":"10.24425/aoa.2023.146642","DOIUrl":"https://doi.org/10.24425/aoa.2023.146642","url":null,"abstract":"This article presents a comparison of test results from two models of anti-vibration systems (I and II) made employing MJF 3D printing technology and two different materials. The research included laboratory tests and numerical simulations, assuming a linear nature of the mechanical properties for the materials and models of structures. The aim of this research was to assess the consistency between laboratory test and numerical simulation results. In addition, evaluation of the suitability of using MJF technology to produce anti-vibration systems was conducted. During the laboratory tests, the response of the two models of structures to vibrations generated by an exciter was recorded using a high-speed camera. Subsequent image analysis was performed using the MOVIAS Neo software. The obtained values of vibration displacements and resonant frequencies were used to validate the numerical model created in the Simcenter Femap software. Relative differences between the values of resonant frequencies obtained experimentally and through simulations were determined. In the case of the structural model I, creating its numerical model without considering the non-linearity of mechanical parameters was found to be unjustified. The comparison of the displacements determined during numerical simulations showed relative differences of less than 16% for both models in relation to the laboratory test results. This comparison result indicates a satisfactory accuracy in simulating this parameter. An assessment of the quality and accuracy of MJF technology-produced prints, led to the conclusion that due to the formation of internal stresses during the print creation, the use of “soft” materials in this technology is problematic.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"18 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139209824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"3D Synthetic Aperture Imaging Method in Spectrum Domain for Low-Cost Portable Ultrasound Systems","authors":"Jurij Tasinkiewicz","doi":"10.24425/aoa.2023.146820","DOIUrl":"https://doi.org/10.24425/aoa.2023.146820","url":null,"abstract":"Portable, hand-held ultrasound devices capable of 3D imaging in real time are the next generation of the medical imaging apparatus adapted not only for professional medical stuff but for a wide group of less advanced users. Limited power supply capacity and the relatively small number of channels used for the ultrasound data acquisition are the most important limitations that should be taken into account when designing such devices and when developing the corresponding image reconstruction algorithms. The aim of this study was to develop a new 3D ultrasound imaging method which would take into account the above-mentioned features of the new generation of ultrasonic devices – low-cost portable general access scanners. Itwas based on the synthetic transmit aperture (STA) method combined with the Fourier spectrum domain (SD) acoustic data processing. The STA using a limited number of elements in transmit and receive modes for ultrasound data acquisition allowed both aforementioned constraints to be obeyed simultaneously. Moreover, the computational speed of the fast Fourier transform (FFT) algorithm utilized for the ultrasound image synthesis in the spectrum domain makes the proposed method to be more competitive compared to the conventional time domain (TD) STA method based on the delay-and-sum (DAS) technique, especially in the case of 3D imaging in real time mode. Performance of the proposed method was verified using numerical 3D acoustic data simulated in the Field II program for MATLAB and using experimental data from the custom design 3D scattering phantom collected by means of the Verasonics Vantage 256™ research ultrasound system equipped with the dedicated 1024-element 2D matrix transducer. The","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"98 3","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139211400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jiaman Du, Zilong Peng, GE Lili, S. Lyu, Fulin Zhou, Yan Liu
{"title":"Modulation Mechanism of Acoustic Scattering in Underwater Corner Reflectors with Acoustic Metasurfaces","authors":"Jiaman Du, Zilong Peng, GE Lili, S. Lyu, Fulin Zhou, Yan Liu","doi":"10.24425/aoa.2023.146643","DOIUrl":"https://doi.org/10.24425/aoa.2023.146643","url":null,"abstract":",","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139211490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
LI Bing, Fu-lin Zhou, Jun Fan, Bin Wang, Liwen Tan, P. R. China
{"title":"Research on the Performance Optimization of Turbulent Self-Noise Suppression and Sound Transmission of Acoustic Windows Made from Functionally Graded Material","authors":"LI Bing, Fu-lin Zhou, Jun Fan, Bin Wang, Liwen Tan, P. R. China","doi":"10.24425/aoa.2023.146812","DOIUrl":"https://doi.org/10.24425/aoa.2023.146812","url":null,"abstract":"For a simplified sonar dome model, an optimization method for internal gradients of functionally graded material (FGM) acoustic windows is proposed in this paper. This method can be used to design optimized FGM acoustic windows with better turbulent self-noise suppression and sound transmission performances. A theoretical model of FGM acoustic windows to evaluate the reduction of self-noise caused by the turbulent boundary layer (TBL) pulsating pressure and the sound transmission loss (STL) is derived through the double Fourier transform and the wavenumber frequency spectrum analysis, respectively, based on the transfer matrix idea and the classical elastic theory. The accuracy of the theory is verified by the finite element results of COMSOL Multiphysics. Utilizing the genetic algorithm (GA) and taking the monotonic gradient as the constraint condition, the internal gradient optimization method of FGM acoustic windows obtains the optimization variables in the Bernstein polynomial when the optimization objective is minimized by iterating the optimization variables in the deviation function represented by the Bernstein polynomial that is introduced in the gradient function. The STL, the turbulent self-noise reduction or a weighting function of the STL and turbulent self-noise reduction of FGM acoustic windows is chosen as the optimization objective. The optimization calculation of the sound transmission or turbulent self-noise suppression performances is carried out for the FRP-rubber FGM (FGM with fiber reinforced plastic (FRP) as the substrate material and rubber as the top material) acoustic window. The optimized results show that both the sound transmission and turbulent self-noise suppression performance are effectively improved, which verifies the effectiveness of the optimization method. Finally, the mechanism of the sound transmission and self-noise suppression characteristics before and after optimization are explained and analyzed based on the equivalent model of graded materials. The research results of this paper provide a reference value for the future design of FGM acoustic windows for sonar domes.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"16 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139214965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Janusz Wójcik Professor of the IPPT PAN (In Memoriam)","authors":"","doi":"10.24425/aoa.2023.146817","DOIUrl":"https://doi.org/10.24425/aoa.2023.146817","url":null,"abstract":"","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"48 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139210238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}