Archives of Acoustics最新文献

筛选
英文 中文
Modulation Mechanism of Acoustic Scattering in Underwater Corner Reflectors with Acoustic Metasurfaces 带声学元表面的水下角反射器中的声散射调制机制
IF 0.9 4区 物理与天体物理
Archives of Acoustics Pub Date : 2023-11-29 DOI: 10.24425/aoa.2023.146643
Jiaman Du, Zilong Peng, GE Lili, S. Lyu, Fulin Zhou, Yan Liu
{"title":"Modulation Mechanism of Acoustic Scattering in Underwater Corner Reflectors with Acoustic Metasurfaces","authors":"Jiaman Du, Zilong Peng, GE Lili, S. Lyu, Fulin Zhou, Yan Liu","doi":"10.24425/aoa.2023.146643","DOIUrl":"https://doi.org/10.24425/aoa.2023.146643","url":null,"abstract":",","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139211490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on the Performance Optimization of Turbulent Self-Noise Suppression and Sound Transmission of Acoustic Windows Made from Functionally Graded Material 功能分级材料吸声窗的湍流自噪声抑制和透声性能优化研究
IF 0.9 4区 物理与天体物理
Archives of Acoustics Pub Date : 2023-11-29 DOI: 10.24425/aoa.2023.146812
LI Bing, Fu-lin Zhou, Jun Fan, Bin Wang, Liwen Tan, P. R. China
{"title":"Research on the Performance Optimization of Turbulent Self-Noise Suppression and Sound Transmission of Acoustic Windows Made from Functionally Graded Material","authors":"LI Bing, Fu-lin Zhou, Jun Fan, Bin Wang, Liwen Tan, P. R. China","doi":"10.24425/aoa.2023.146812","DOIUrl":"https://doi.org/10.24425/aoa.2023.146812","url":null,"abstract":"For a simplified sonar dome model, an optimization method for internal gradients of functionally graded material (FGM) acoustic windows is proposed in this paper. This method can be used to design optimized FGM acoustic windows with better turbulent self-noise suppression and sound transmission performances. A theoretical model of FGM acoustic windows to evaluate the reduction of self-noise caused by the turbulent boundary layer (TBL) pulsating pressure and the sound transmission loss (STL) is derived through the double Fourier transform and the wavenumber frequency spectrum analysis, respectively, based on the transfer matrix idea and the classical elastic theory. The accuracy of the theory is verified by the finite element results of COMSOL Multiphysics. Utilizing the genetic algorithm (GA) and taking the monotonic gradient as the constraint condition, the internal gradient optimization method of FGM acoustic windows obtains the optimization variables in the Bernstein polynomial when the optimization objective is minimized by iterating the optimization variables in the deviation function represented by the Bernstein polynomial that is introduced in the gradient function. The STL, the turbulent self-noise reduction or a weighting function of the STL and turbulent self-noise reduction of FGM acoustic windows is chosen as the optimization objective. The optimization calculation of the sound transmission or turbulent self-noise suppression performances is carried out for the FRP-rubber FGM (FGM with fiber reinforced plastic (FRP) as the substrate material and rubber as the top material) acoustic window. The optimized results show that both the sound transmission and turbulent self-noise suppression performance are effectively improved, which verifies the effectiveness of the optimization method. Finally, the mechanism of the sound transmission and self-noise suppression characteristics before and after optimization are explained and analyzed based on the equivalent model of graded materials. The research results of this paper provide a reference value for the future design of FGM acoustic windows for sonar domes.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"16 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139214965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Janusz Wójcik Professor of the IPPT PAN (In Memoriam) 雅努什-沃伊奇克 IPPT PAN 教授(悼念)
IF 0.9 4区 物理与天体物理
Archives of Acoustics Pub Date : 2023-11-29 DOI: 10.24425/aoa.2023.146817
{"title":"Janusz Wójcik Professor of the IPPT PAN (In Memoriam)","authors":"","doi":"10.24425/aoa.2023.146817","DOIUrl":"https://doi.org/10.24425/aoa.2023.146817","url":null,"abstract":"","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"48 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139210238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Proposal Concerning Assessment of Alternative Cityscape Designs with Audiovisual Comfort and Health of Inhabitants 关于评估其他城市景观设计的视听舒适度和居民健康的建议
IF 0.9 4区 物理与天体物理
Archives of Acoustics Pub Date : 2023-11-29 DOI: 10.24425/aoa.2023.146818
Agnieszka Ozga, Jacek Wierzbicki, Dominik Mleczko
{"title":"A Proposal Concerning Assessment of Alternative Cityscape Designs with Audiovisual Comfort and Health of Inhabitants","authors":"Agnieszka Ozga, Jacek Wierzbicki, Dominik Mleczko","doi":"10.24425/aoa.2023.146818","DOIUrl":"https://doi.org/10.24425/aoa.2023.146818","url":null,"abstract":"The research concerning the future of sound in towns and cities is focused on two main issues: studies are conducted separately on the comfort, i.e., assessment of visual scenery and sound levels in a cityscape and separately, on the health protection issues. The policy of the acoustic environment control with regard to the health of its inhabitants is traditionally connected with measurements of noise levels presented with the help of the coefficients L den and L night noise indicators, while the models based on tranquillity rating (TR) with the help of the coefficients L Amax , L Amin , L Aeq , L A10 . None of these coefficients refers to the soundscape. In this paper, we present a justification of the necessity to enter into discussion on the need to combine these research areas. The authorities managing towns and cities of the future should be provided with tools enabling them to assess modernisation projects from the point of view of both health and comfort of inhabitants. We present our ideas treating them as an invitation to a scientific discourse, in the form of analysis of actual projects concerning modification of existing cityscapes. The modifications are aimed at returning some unfavourably developed spaces to the inhabitants. When analysing the changes proposed in the projects, we take into account two models of the revitalised area quality assessment. The first model is used to assess the effect of noise on health. The second model, based on the indicator known as the TR, serves simultaneous assessment of an area from both visual and acoustical aspects. The models used contemporarily by scientists show multiple flaws, therefore, for the TR indicator we propose a modification taking the sound structure into account. The modification embodies the idea of masking unpleasant sounds with friendly ones. The changes to the model are presented, in this paper, in the context of two projects which were worked out in the framework of 12th edition of the intercollegiate workshop cycle The New Cityscapes. In the course of each workshop of the cycle, we combined art, science, and technology in order to seek solutions creating a better future. In view of the importance of this issue and the need to introduce a certain level of universalism, the authors offer an invitation to join a discussion on the future of sound in urban agglomerations.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":"198 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139211928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Improved EMD Method Based on Utilizing Certain Inflection Points in the Construction of Envelope Curves 包络曲线构造中利用某些拐点的改进EMD方法
IF 0.9 4区 物理与天体物理
Archives of Acoustics Pub Date : 2023-08-29 DOI: 10.24425/aoa.2023.145245
M. Kafil, K. Darabi, S. Ziaei-Rad
{"title":"An Improved EMD Method Based on Utilizing Certain Inflection Points in the Construction of Envelope Curves","authors":"M. Kafil, K. Darabi, S. Ziaei-Rad","doi":"10.24425/aoa.2023.145245","DOIUrl":"https://doi.org/10.24425/aoa.2023.145245","url":null,"abstract":"The empirical mode decomposition (EMD) algorithm is widely used as an adaptive time-frequency analysis method to decompose nonlinear and non-stationary signals into sets of intrinsic mode functions (IMFs). In the traditional EMD, the lower and upper envelopes should interpolate the minimum and maximum points of the signal, respectively. In this paper, an improved EMD method is proposed based on the new interpolation points, which are special inflection points (SIP n ) of the signal. These points are identified in the signal and its first ( n − 1 ) derivatives and are considered as auxiliary interpolation points in addition to the extrema. Therefore, the upper and lower envelopes should not only pass through the extrema but also these SIP n sets of points. By adding each set of SIP i ( i = 1 , 2 ,...,n ) to the interpolation points, the frequency resolution of EMD is improved to a certain extent. The effectiveness of the proposed SIP n -EMD is validated by the decomposition of synthetic and experimental bearing vibration signals.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43188340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ultrasonic P- and S-Wave Reflection and CPT Soundings for Measuring Shear Strength in Soil Stabilized by Deep Lime/Cement Columns in Stockholm Norvik Port 斯德哥尔摩诺维克港深石灰/水泥柱稳定土抗剪强度超声P、s波反射及CPT测深
IF 0.9 4区 物理与天体物理
Archives of Acoustics Pub Date : 2023-08-29 DOI: 10.24425/aoa.2023.145243
P. Lindh, Polina Lemenkova
{"title":"Ultrasonic P- and S-Wave Reflection and CPT Soundings for Measuring Shear Strength in Soil Stabilized by Deep Lime/Cement Columns in Stockholm Norvik Port","authors":"P. Lindh, Polina Lemenkova","doi":"10.24425/aoa.2023.145243","DOIUrl":"https://doi.org/10.24425/aoa.2023.145243","url":null,"abstract":"In this research project, the measurements of the ultrasonic P-and S-waves and seismic cone penetration testing (CPT) were applied to identify subsurface conditions and properties of clayey soil stabilized with lime/cement columns in the Stockholm Norvik Port, Sweden. Applied geophysical methods enabled to identify a connection between the resistance of soil and strength in the stabilized columns. The records of the seismic tests were obtained in the laboratory of Swedish Geotechnical Institute (SGI) through estimated P-and S-wave velocities using techniques of resonance frequency measurement of the stabilized specimens. The CPT profiles were used to evaluate the quality of the lime/cement columns of the reinforced soil by the interpretation of signals. The relationship between the P-and S-waves demonstrated a gain in strength during soil hardening. The quality of soil was evaluated by seismic measurements with aim to achieve sufficient strength of foundations prior to the construction of the infrastructure objects and industrial works. Seismic CPT is an effective method essential to evaluate the correct placement of the CPT inside the column. This work demonstrated the alternative seismic methods supporting the up-hole technology of drilling techniques for practical purpose in civil engineering and geotechnical works.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45932607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Microscopic Prediction Model for Traffic Noise in Adjacent Regions to Arterial Roads 主干道邻近区域交通噪声的微观预测模型
IF 0.9 4区 物理与天体物理
Archives of Acoustics Pub Date : 2023-08-29 DOI: 10.24425/aoa.2023.145238
Li Ming, Jizhou Liu
{"title":"A Microscopic Prediction Model for Traffic Noise in Adjacent Regions to Arterial Roads","authors":"Li Ming, Jizhou Liu","doi":"10.24425/aoa.2023.145238","DOIUrl":"https://doi.org/10.24425/aoa.2023.145238","url":null,"abstract":"Traffic noise in big cities impacts the people who live and work in high-rise buildings alongside arterial roads. To determine this impact magnitude, this paper proposes and validates a microscopic level method that locally predicts the total noise level and the spectral characteristics of traffic flow in the near-road region. In the proposed method, the vehicles on the road are considered as multiple queues of moving point sound sources with ground reflection considered. To account for the flow of vehicles on the road, traffic field data, and individual vehicle noise source models are also employed. A field measurement is conducted to validate the proposed method. Results comparison shows that the predicted and the measured overall A-weighted sound pressure level and A-weighted noise spectra are within 3 dBA and 5 dBA, respectively. Based on the validated method, the spatial distribution of traffic noise near the arterial road is investigated for different traffic scenarios.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42963984","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on Noise Attenuation Characteristics of Hydrofoil with Specific Cavitation Number 具有比空化数的水翼噪声衰减特性研究
IF 0.9 4区 物理与天体物理
Archives of Acoustics Pub Date : 2023-08-29 DOI: 10.24425/aoa.2023.145240
Xiaohui He, Zhongle Liu, Yang Chao, Zhiyong Yuan
{"title":"Study on Noise Attenuation Characteristics of Hydrofoil with Specific Cavitation Number","authors":"Xiaohui He, Zhongle Liu, Yang Chao, Zhiyong Yuan","doi":"10.24425/aoa.2023.145240","DOIUrl":"https://doi.org/10.24425/aoa.2023.145240","url":null,"abstract":"In this study, the modified Sauer cavitation model and Kirchhoff-Ffowcs Williams and Hawkings (K-FWH) acoustic model were adopted to numerically simulate the unsteady cavitation flow field and the noise of a three-dimensional NACA66 hydrofoil at a constant cavitation number. The aim of the study is to conduct and analyze the noise performance of a hydrofoil and also determine the characteristics of the sound pressure spectrum, sound power spectrum, and noise changes at different monitoring points. The noise change, sound pressure spectrum, and power spectrum characteristics were estimated at different monitoring points, such as the suction side, pressure side, and tail of the hydrofoil. The noise characteristics and change law of the NACA66 hydrofoil under a constant cavitation number are presented. The results show that hydrofoil cavitation takes on a certain degree of pulsation and periodicity. Under the condition of a constant cavitation number, as the attack angle increases, the cavitation area of the hydrofoil becomes longer and thicker, and the initial position of cavitation moves forward. When the inflow velocity increases, the cavitation noise and the cavitation area change more drastically and have a superposition tendency toward the downstream. The novelty is that the study presents important calculations and analyses regarding the noise performance of a hydrofoil, characteristics of the sound pressure spectrum, and sound power spectrum and noise changes at different monitoring points. The article may be useful for specialists in the field of engineering and physics.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43277413","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PZT Asymmetrical Shape Optimization in Active Vibration Reduction of Triangular Plates 三角形板主动减振中的PZT非对称形状优化
IF 0.9 4区 物理与天体物理
Archives of Acoustics Pub Date : 2023-08-29 DOI: 10.24425/aoa.2023.145241
A. Brański, Romuald Kuras
{"title":"PZT Asymmetrical Shape Optimization in Active Vibration Reduction of Triangular Plates","authors":"A. Brański, Romuald Kuras","doi":"10.24425/aoa.2023.145241","DOIUrl":"https://doi.org/10.24425/aoa.2023.145241","url":null,"abstract":"The article presents the new 2D asymmetrical PZT (a-PZT) and its effectiveness in the active reduction of triangular plate vibrations. The isosceles right triangular plate with simply supported edges was chosen as the research object. To determine the a-PZT asymmetry and its distribution on the plate, a maximum bending moment criterion for the beam was used. First of all, this criterion points out exact center location of the a-PZT. It was at the point, at which the plate bending moment has reached its maximum value. Next, at this point, it was assumed that the piezoelectric consists of active fibers located radially from the center. Each fiber acted on the plate as a separate actuator. Next, at each direction, the actuator asymmetry was found mathematically by minimizing the amplitude of the vibrations. By connecting the outer edges of individual fibers, the 2D a-PZT was obtained. It was quantitatively confirmed that the effectiveness of the new a-PZT was the best compared with the effectiveness of the standard square and the circular PZTs, adding the same exciting energy to the PZTs.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46661962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Experiments of a New Internal Cone Type Traveling Wave Ultrasonic Motor 一种新型内锥型行波超声电机的设计与实验
IF 0.9 4区 物理与天体物理
Archives of Acoustics Pub Date : 2023-08-29 DOI: 10.24425/aoa.2023.145242
Ye Chen, Junlin Yang, Li Liang, Shihao Xiao
{"title":"Design and Experiments of a New Internal Cone Type Traveling Wave Ultrasonic Motor","authors":"Ye Chen, Junlin Yang, Li Liang, Shihao Xiao","doi":"10.24425/aoa.2023.145242","DOIUrl":"https://doi.org/10.24425/aoa.2023.145242","url":null,"abstract":"In order to simplify the motor structure, to reduce the difficulty of rotor pre-pressure application and to obtain better output performance, a new internal cone type rotating traveling wave ultrasonic motor is proposed. The parametric model of the internal cone type ultrasonic motor was established by the ANSYS finite element software. The ultrasonic motor consists of an internal cone type vibrator and a tapered rotor. The dynamic analysis of the motor vibrator is carried out, and two in-plane third-order bending modes with the same frequency and orthogonality are selected as the working modes. The other advantages of this motor are that pre-pressure can be imposed by the weight of the rotor. The prototype was trial-manufactured and experimentally tested for its vibration characteristics and output performance. When the excitation frequency is 22260.0 Hz, the pre-pressure is 0.1 N and the peak-to-peak excitation voltage is 300 V, the maximum output torque of the prototype is 1.06 N ⋅ mm, and the maximum no-load speed can reach 441.2 rpm. The optimal pre-pressure force under different loads is studied, and the influence of the pre-pressure force on the mechanical properties of the ultrasonic motor is analyzed. It is instructive in the practical application of this ultrasonic motor.","PeriodicalId":8149,"journal":{"name":"Archives of Acoustics","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2023-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46089809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信