Jessica Conway, Animesh Acharjee, Niharika A Duggal
{"title":"Integrated analysis revealing novel associations between dietary patterns and the immune system in older adults.","authors":"Jessica Conway, Animesh Acharjee, Niharika A Duggal","doi":"10.1093/intbio/zyae010","DOIUrl":"10.1093/intbio/zyae010","url":null,"abstract":"<p><p>With the expanding ageing population, there is a growing interest in the maintenance of immune health to support healthy ageing. Enthusiasm exists for unravelling the impact of diet on the immune system and its therapeutic potential. However, a key challenge is the lack of studies investigating the effect of dietary patterns and nutrients on immune responses. Thus, we have used an integrative analysis approach to improve our understanding of diet-immune system interactions in older adults. To do so, dietary data were collected in parallel with performing immunophenotyping and functional assays from healthy older (n = 40) participants. Food Frequency Questionnaire (FFQ) was utilised to derive food group intake and multi-colour flow cytometry was performed for immune phenotypic and functional analysis. Spearman correlation revealed the strength of association between all combinations of dietary components, micronutrients, and hallmarks of immunesenescence. In this study, we propose for the first time that higher adherence to the Mediterranean diet is associated with a positive immune-ageing trajectory (Lower IMM-AGE score) in older adults due to the immune protective effects of high dietary fibre and PUFA intake in combating accumulation or pro-inflammatory senescent T cells. Furthermore, a diet rich in Vit A, Vit B6 and Vit B12 is associated with fewer features of immunesenescence [such as accumulation of terminally differentiated memory CD8 T cells] in older adults. Based on our findings we propose a future nutrition-based intervention study evaluating the efficacy of adherence to the MED diet alongside a multi-nutrient supplementation on immune ageing in older adults to set reliable dietary recommendations with policymakers that can be given to geriatricians and older adults. Insight box: There is a growing interest in the maintenance of immune health to boost healthy ageing. However, a key challenge is the lack of studies investigating the effect of dietary patterns and nutrients on immune responses. Thus, to do so we collected dietary data in parallel with performing immunophenotyping and functional assays on healthy older (n = 40) participants, followed by an integrative analysis approach to improve our understanding of diet-immune system interactions in older adults. We strongly believe that these new findings are appropriate for IB and will be of considerable interest to its broad audience.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141173749","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Correction to: Mimicking the topography of the epidermal-dermal interface with elastomer substrates.","authors":"","doi":"10.1093/intbio/zyae004","DOIUrl":"10.1093/intbio/zyae004","url":null,"abstract":"","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":" ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139690745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Targeting IKZF1 via HDAC1: Combating Acute Myeloid Leukemia.","authors":"Sathyanarayan Balaji, Suvitha Anbarasu, Sudha Ramaiah, Anand Anbarasu","doi":"10.1093/intbio/zyae022","DOIUrl":"https://doi.org/10.1093/intbio/zyae022","url":null,"abstract":"<p><p>Acute myeloid leukemia (AML) accounts for 1.3% of all cancers, with a limited survival of only 30%, and treating AML is a continuous challenge in medicine. IKZF1 is a DNA-binding protein that is highly mutated and undruggable but significant in causing AML. The current study aims to target its transcription factors (TFs) modulating IKZF1 activity. The TF network was constructed and analyzed which revealed a dense Markov cluster (MCL) cluster and five hub genes namely, HDAC1, EP300, CREBBP, TP53, and MYC; the first node clusters were generated for the hub genes. Functional enrichment analysis found AML pathway enriched in all the clusters. Gene ontology terms were majorly related to transcription regulation terms including RNA polymerase transcription regulation, DNA binding activity, DNA templated transcription, and transcription factor binding. Further, the mutation profile of all the TFs found HDAC1 with a very low mutation profile of 0.1% and the survival plot found HDAC1 with a hazard ratio of 1.17 with increased survival upon low expression. Also, among the hub genes, HDAC1 was the only first node interactor with IKZF1. Thus, HDAC1 could be a potential biomarker candidate as well as a key target in treating AML. Insight Box The study has an integrated approach for identifying a potential target through network analysis, functional enrichment analysis, mutation profiling survival prognosis, and target screening. The study employs a better strategy for targeting IKZF1, a significantly upregulated gene in AML by regulating its transcription factors. The analysis revealed a network of TFs regulating IKZF1, among which HDAC1 emerged as a promising candidate due to its low mutation rate, association with better survival outcomes, and direct interaction with IKZF1. This suggests HDAC1 could be a valuable biomarker and therapeutic target for AML treatment.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Russell Whelan, Daniel Lih, Jun Xue, Jonathan Himmelfarb, Ying Zheng
{"title":"Modeling Shiga toxin-induced human renal-specific microvascular injury.","authors":"Russell Whelan, Daniel Lih, Jun Xue, Jonathan Himmelfarb, Ying Zheng","doi":"10.1093/intbio/zyae001","DOIUrl":"10.1093/intbio/zyae001","url":null,"abstract":"<p><p>Shiga toxin (Stx) causes significant renal microvascular injury and kidney failure in the pediatric population, and an effective targeted therapy has yet to be demonstrated. Here we established a human kidney microvascular endothelial cell line for the study of Stx mediated injuries with respect to their morphologic, phenotypic, and transcriptional changes, and modeled Stx induced thrombotic microangiopathy (TMA) in flow-mediated 3D microvessels. Distinct from other endothelial cell lines, both isolated primary and immortalized human kidney microvascular endothelial cells demonstrate robust cell-surface expression of the Stx receptor Gb3, and concomitant dose-dependent toxicity to Stx, with significant contributions from caspase-dependent cell death. Use of a glucosylceramide synthase inhibitor (GCSi) to target disruption of the synthetic pathway of Gb3 resulted in remarkable protection of kidney microvascular cells from Stx injury, shown in both cellular morphologies, caspase activation and transcriptional analysis from RNA sequencing. Importantly, these findings are recapitulated in 3D engineered kidney microvessels under flow. Moreover, whole blood perfusion through Stx-treated microvessels led to marked platelet binding on the vessel wall, which was significantly reduced with the treatment of GCSi. These results validate the feasibility and utility of a bioengineered ex vivo human microvascular model under flow to recapitulate relevant blood-endothelial interactions in STEC-HUS. The profound protection afforded by GCSi demonstrates a preclinical opportunity for investigation in human tissue approximating physiologic conditions. Moreover, this work provides a broad foundation for novel investigation into TMA injury pathogenesis and treatment. Insight Box: Shiga toxin (Stx) causes endothelial injury that results in significant morbidity and mortality in the pediatric population, with no effective targeted therapy. This paper utilizes human kidney microvascular cells to examine Stx mediated cell death in both 2D culture and flow-mediated 3D microvessels, with injured microvessels also developing marked platelet binding and thrombi formation when perfused with blood, consistent with the clinical picture of HUS. This injury is abrogated with a small molecule inhibitor targeting the synthetic pathway of the Shiga toxin receptor. Our findings shed light onto Stx-induced vascular injuries and pave a way for broad investigation into thrombotic microangiopathies.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458155/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139544881","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zachary Kirchner, Anna Geohagan, Agnieszka Truszkowska
{"title":"A Vicsek-type model of confined cancer cells with variable clustering affinities.","authors":"Zachary Kirchner, Anna Geohagan, Agnieszka Truszkowska","doi":"10.1093/intbio/zyae005","DOIUrl":"https://doi.org/10.1093/intbio/zyae005","url":null,"abstract":"<p><p>Clustering of cells is an essential component of many biological processes from tissue formation to cancer metastasis. We develop a minimal, Vicsek-based model of cellular interactions that robustly and accurately captures the variable propensity of different cells to form groups when confined. We calibrate and validate the model with experimental data on clustering affinities of four lines of tumor cells. We then show that cell clustering or separation tendencies are retained in environments with higher cell number densities and in cell mixtures. Finally, we calibrate our model with experimental measurements on the separation of cells treated with anti-clustering agents and find that treated cells maintain their distances in denser suspensions. We show that the model reconstructs several cell interaction mechanisms, which makes it suitable for exploring the dynamics of cell cluster formation as well as cell separation. Insight: We developed a model of cellular interactions that captures the clustering and separation of cells in an enclosure. Our model is particularly relevant for microfluidic systems with confined cells and we centered our work around one such emerging assay for the detection and research on clustering breast cancer cells. We calibrated our model using the existing experimental data and used it to explore the functionality of the assay under a broader set of conditions than originally considered. Future usages of our model can include purely theoretical and computational considerations, exploring experimental devices, and supporting research on small to medium-sized cell clusters.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139970027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Continuum interpretation of mechano-adaptation in micropatterned epithelia informed by in vitro experiments.","authors":"Bernard L Cook, Patrick W Alford","doi":"10.1093/intbio/zyad009","DOIUrl":"https://doi.org/10.1093/intbio/zyad009","url":null,"abstract":"<p><p>Epithelial tissues adapt their form and function following mechanical perturbations, or mechano-adapt, and these changes often result in reactive forces that oppose the direction of the applied change. Tissues subjected to ectopic tensions, for example, employ behaviors that lower tension, such as increasing proliferation or actomyosin turnover. This oppositional behavior suggests that the tissue has a mechanical homeostasis. Whether attributed to maintenance of cellular area, cell density, or cell and tissue tensions, epithelial mechanical homeostasis has been implicated in coordinating embryonic morphogenesis, wound healing, and maintenance of adult tissues. Despite advances toward understanding the feedback between mechanical state and tissue response in epithelia, more work remains to be done to examine how tissues regulate mechanical homeostasis using epithelial sheets with defined micropatterned shapes. Here, we used cellular microbiaxial stretching (CμBS) to investigate mechano-adaptation in micropatterned tissues of different shape consisting of Madin-Darby canine kidney cells. Using the CμBS platform, tissues were subjected to a 30% stretch that was held for 24 h. We found that, following stretch, tissue stresses immediately increased then slowly evolved over time, approaching their pre-stretch values by 24 h. Organization of the actin cytoskeletal was found to play a role in this process: anisotropic ally structured tissues exhibited anisotropic stress patterns, and the cytoskeletal became more aligned following stretch and reorganized over time. Interestingly, in unstretched tissues, stresses also decreased, which was found to be driven by proliferation-induced cellular confinement and change in tissue thickness. We modeled these behaviors with a continuum-based model of epithelial growth that accounted for stress-induced actin remodeling and proliferation, and found this model to strongly capture experimental behavior. Ultimately, this combined experimental-modeling approach suggests that epithelial mechano-adaptation depends on cellular architecture and proliferation, which can be modeled with a field-averaged approach applicable to more specific contexts in which change is driven by epithelial mechanical homeostasis. Insight box Epithelial tissues adapt their form and function following mechanical perturbation, and it is thought that this 'mechano-adaptation' plays an important role in driving processes like embryonic morphogenesis, wound healing, and adult tissue maintenance. Here, we use cellular microbiaxial stretching to probe this process in vitro in small epithelial tissues whose geometries were both controlled and varied. By using a highly precise stretching device and a continuum mechanics modeling framework, we revealed that tissue mechanical state changes following stretch and over time, and that this behavior can be explained by stress-dependent changes in actin fibers and proliferation. Integration of these approac","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"15 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10318950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chau Ly, Heather Ogana, Hye Na Kim, Samantha Hurwitz, Eric J Deeds, Yong-Mi Kim, Amy C Rowat
{"title":"Altered physical phenotypes of leukemia cells that survive chemotherapy treatment.","authors":"Chau Ly, Heather Ogana, Hye Na Kim, Samantha Hurwitz, Eric J Deeds, Yong-Mi Kim, Amy C Rowat","doi":"10.1093/intbio/zyad006","DOIUrl":"10.1093/intbio/zyad006","url":null,"abstract":"<p><p>The recurrence of cancer following chemotherapy treatment is a major cause of death across solid and hematologic cancers. In B-cell acute lymphoblastic leukemia (B-ALL), relapse after initial chemotherapy treatment leads to poor patient outcomes. Here we test the hypothesis that chemotherapy-treated versus control B-ALL cells can be characterized based on cellular physical phenotypes. To quantify physical phenotypes of chemotherapy-treated leukemia cells, we use cells derived from B-ALL patients that are treated for 7 days with a standard multidrug chemotherapy regimen of vincristine, dexamethasone, and L-asparaginase (VDL). We conduct physical phenotyping of VDL-treated versus control cells by tracking the sequential deformations of single cells as they flow through a series of micron-scale constrictions in a microfluidic device; we call this method Quantitative Cyclical Deformability Cytometry. Using automated image analysis, we extract time-dependent features of deforming cells including cell size and transit time (TT) with single-cell resolution. Our findings show that VDL-treated B-ALL cells have faster TTs and transit velocity than control cells, indicating that VDL-treated cells are more deformable. We then test how effectively physical phenotypes can predict the presence of VDL-treated cells in mixed populations of VDL-treated and control cells using machine learning approaches. We find that TT measurements across a series of sequential constrictions can enhance the classification accuracy of VDL-treated cells in mixed populations using a variety of classifiers. Our findings suggest the predictive power of cell physical phenotyping as a complementary prognostic tool to detect the presence of cells that survive chemotherapy treatment. Ultimately such complementary physical phenotyping approaches could guide treatment strategies and therapeutic interventions. Insight box Cancer cells that survive chemotherapy treatment are major contributors to patient relapse, but the ability to predict recurrence remains a challenge. Here we investigate the physical properties of leukemia cells that survive treatment with chemotherapy drugs by deforming individual cells through a series of micron-scale constrictions in a microfluidic channel. Our findings reveal that leukemia cells that survive chemotherapy treatment are more deformable than control cells. We further show that machine learning algorithms applied to physical phenotyping data can predict the presence of cells that survive chemotherapy treatment in a mixed population. Such an integrated approach using physical phenotyping and machine learning could be valuable to guide patient treatments.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"15 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9550907","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Leonardo R Nunn, Terry D Juang, David J Beebe, Nicolas J Wheeler, Mostafa Zamanian
{"title":"A high-throughput sensory assay for parasitic and free-living nematodes.","authors":"Leonardo R Nunn, Terry D Juang, David J Beebe, Nicolas J Wheeler, Mostafa Zamanian","doi":"10.1093/intbio/zyad010","DOIUrl":"10.1093/intbio/zyad010","url":null,"abstract":"<p><p>Sensory pathways first elucidated in Caenorhabditis elegans are conserved across free-living and parasitic nematodes, even though each species responds to a diverse array of compounds. Most nematode sensory assays are performed by tallying observations of worm behavior on two-dimensional planes using agarose plates. These assays have been successful in the study of volatile sensation but are poorly suited for investigation of water-soluble gustation or parasitic nematodes without a free-living stage. In contrast, gustatory assays tend to be tedious, often limited to the manipulation of a single individual at a time. We have designed a nematode sensory assay using a microfluidics device that allows for the study of gustation in a 96-well, three-dimensional environment. This device is suited for free-living worms and parasitic worms that spend their lives in an aqueous environment, and we have used it to show that ivermectin inhibits the gustatory ability of vector-borne parasitic nematodes. Insight box Nematodes are powerful model organisms for understanding the sensory biology of multicellular eukaryotes, and many parasitic species cause disease in humans. Simple sensory assays performed on agarose plates have been the bedrock for establishing the neuronal, genetic, and developmental foundations for many sensory modalities in nematodes. However, these classical assays are poorly suited for translational movement of many parasitic nematodes and the sensation of water-soluble molecules (gustation). We have designed a device for high-throughput nematode sensory assays in a gel matrix. This 'gustatory microplate' is amenable to several species and reveals novel responses by free-living and parasitic nematodes to cues and drugs.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"15 ","pages":""},"PeriodicalIF":2.5,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10752570/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10026410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Patrick H McMinn, Adeel Ahmed, Anna Huttenlocher, David J Beebe, Sheena C Kerr
{"title":"The lymphatic endothelium-derived follistatin: activin A axis regulates neutrophil motility in response to Pseudomonas aeruginosa.","authors":"Patrick H McMinn, Adeel Ahmed, Anna Huttenlocher, David J Beebe, Sheena C Kerr","doi":"10.1093/intbio/zyad003","DOIUrl":"10.1093/intbio/zyad003","url":null,"abstract":"<p><p>The lymphatic system plays an active role during infection, however the role of lymphatic-neutrophil interactions in host-defense responses is not well understood. During infection with pathogens such as Pseudomonas aeruginosa, Staphylococcus aureus and Yersinia pestis, neutrophils traffic from sites of infection through the lymphatic vasculature, to draining lymph nodes to interact with resident lymphocytes. This process is poorly understood, in part, due to the lack of in vitro models of the lymphatic system. Here we use a 3D microscale lymphatic vessel model to examine neutrophil-lymphatic cell interactions during host defense responses to pathogens. In previous work, we have shown that follistatin is secreted at high concentrations by lymphatic endothelial cells during inflammation. Follistatin inhibits activin A, a member of the TGF-β superfamily, and, together, these molecules form a signaling pathway that plays a role in regulating both innate and adaptive immune responses. Although follistatin and activin A are constitutively produced in the pituitary, gonads and skin, their major source in the serum and their effects on neutrophils are poorly understood. Here we report a microfluidic model that includes both blood and lymphatic endothelial vessels, and neutrophils to investigate neutrophil-lymphatic trafficking during infection with P. aeruginosa. We found that lymphatic endothelial cells produce secreted factors that increase neutrophil migration toward P. aeruginosa, and are a significant source of both follistatin and activin A during Pseudomonas infection. We determined that follistatin produced by lymphatic endothelial cells inhibits activin A, resulting in increased neutrophil migration. These data suggest that the follistatin:activin A ratio influences neutrophil trafficking during infection with higher ratios increasing neutrophil migration.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"15 ","pages":""},"PeriodicalIF":1.5,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10101905/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9450912","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}