{"title":"Correction to: Mimicking the topography of the epidermal-dermal interface with elastomer substrates.","authors":"","doi":"10.1093/intbio/zyae004","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/intbio/zyae004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
期刊介绍:
Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems.
Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity.
Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.