模拟志贺毒素诱导的人体肾脏特异性微血管损伤。

IF 1.5 4区 生物学 Q4 CELL BIOLOGY
Russell Whelan, Daniel Lih, Jun Xue, Jonathan Himmelfarb, Ying Zheng
{"title":"模拟志贺毒素诱导的人体肾脏特异性微血管损伤。","authors":"Russell Whelan, Daniel Lih, Jun Xue, Jonathan Himmelfarb, Ying Zheng","doi":"10.1093/intbio/zyae001","DOIUrl":null,"url":null,"abstract":"<p><p>Shiga toxin (Stx) causes significant renal microvascular injury and kidney failure in the pediatric population, and an effective targeted therapy has yet to be demonstrated. Here we established a human kidney microvascular endothelial cell line for the study of Stx mediated injuries with respect to their morphologic, phenotypic, and transcriptional changes, and modeled Stx induced thrombotic microangiopathy (TMA) in flow-mediated 3D microvessels. Distinct from other endothelial cell lines, both isolated primary and immortalized human kidney microvascular endothelial cells demonstrate robust cell-surface expression of the Stx receptor Gb3, and concomitant dose-dependent toxicity to Stx, with significant contributions from caspase-dependent cell death. Use of a glucosylceramide synthase inhibitor (GCSi) to target disruption of the synthetic pathway of Gb3 resulted in remarkable protection of kidney microvascular cells from Stx injury, shown in both cellular morphologies, caspase activation and transcriptional analysis from RNA sequencing. Importantly, these findings are recapitulated in 3D engineered kidney microvessels under flow. Moreover, whole blood perfusion through Stx-treated microvessels led to marked platelet binding on the vessel wall, which was significantly reduced with the treatment of GCSi. These results validate the feasibility and utility of a bioengineered ex vivo human microvascular model under flow to recapitulate relevant blood-endothelial interactions in STEC-HUS. The profound protection afforded by GCSi demonstrates a preclinical opportunity for investigation in human tissue approximating physiologic conditions. Moreover, this work provides a broad foundation for novel investigation into TMA injury pathogenesis and treatment. Insight Box: Shiga toxin (Stx) causes endothelial injury that results in significant morbidity and mortality in the pediatric population, with no effective targeted therapy. This paper utilizes human kidney microvascular cells to examine Stx mediated cell death in both 2D culture and flow-mediated 3D microvessels, with injured microvessels also developing marked platelet binding and thrombi formation when perfused with blood, consistent with the clinical picture of HUS. This injury is abrogated with a small molecule inhibitor targeting the synthetic pathway of the Shiga toxin receptor. Our findings shed light onto Stx-induced vascular injuries and pave a way for broad investigation into thrombotic microangiopathies.</p>","PeriodicalId":80,"journal":{"name":"Integrative Biology","volume":"16 ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458155/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling Shiga toxin-induced human renal-specific microvascular injury.\",\"authors\":\"Russell Whelan, Daniel Lih, Jun Xue, Jonathan Himmelfarb, Ying Zheng\",\"doi\":\"10.1093/intbio/zyae001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Shiga toxin (Stx) causes significant renal microvascular injury and kidney failure in the pediatric population, and an effective targeted therapy has yet to be demonstrated. Here we established a human kidney microvascular endothelial cell line for the study of Stx mediated injuries with respect to their morphologic, phenotypic, and transcriptional changes, and modeled Stx induced thrombotic microangiopathy (TMA) in flow-mediated 3D microvessels. Distinct from other endothelial cell lines, both isolated primary and immortalized human kidney microvascular endothelial cells demonstrate robust cell-surface expression of the Stx receptor Gb3, and concomitant dose-dependent toxicity to Stx, with significant contributions from caspase-dependent cell death. Use of a glucosylceramide synthase inhibitor (GCSi) to target disruption of the synthetic pathway of Gb3 resulted in remarkable protection of kidney microvascular cells from Stx injury, shown in both cellular morphologies, caspase activation and transcriptional analysis from RNA sequencing. Importantly, these findings are recapitulated in 3D engineered kidney microvessels under flow. Moreover, whole blood perfusion through Stx-treated microvessels led to marked platelet binding on the vessel wall, which was significantly reduced with the treatment of GCSi. These results validate the feasibility and utility of a bioengineered ex vivo human microvascular model under flow to recapitulate relevant blood-endothelial interactions in STEC-HUS. The profound protection afforded by GCSi demonstrates a preclinical opportunity for investigation in human tissue approximating physiologic conditions. Moreover, this work provides a broad foundation for novel investigation into TMA injury pathogenesis and treatment. Insight Box: Shiga toxin (Stx) causes endothelial injury that results in significant morbidity and mortality in the pediatric population, with no effective targeted therapy. This paper utilizes human kidney microvascular cells to examine Stx mediated cell death in both 2D culture and flow-mediated 3D microvessels, with injured microvessels also developing marked platelet binding and thrombi formation when perfused with blood, consistent with the clinical picture of HUS. This injury is abrogated with a small molecule inhibitor targeting the synthetic pathway of the Shiga toxin receptor. Our findings shed light onto Stx-induced vascular injuries and pave a way for broad investigation into thrombotic microangiopathies.</p>\",\"PeriodicalId\":80,\"journal\":{\"name\":\"Integrative Biology\",\"volume\":\"16 \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11458155/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrative Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/intbio/zyae001\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrative Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/intbio/zyae001","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

志贺毒素(Stx)会对儿童造成严重的肾微血管损伤和肾衰竭,而有效的靶向治疗方法尚未得到证实。在这里,我们建立了一种人类肾脏微血管内皮细胞系,用于研究Stx介导的损伤在形态、表型和转录方面的变化,并在流动介导的三维微血管中模拟Stx诱导的血栓性微血管病(TMA)。与其他内皮细胞系不同的是,分离的原代和永生化的人肾脏微血管内皮细胞都显示出细胞表面Stx受体Gb3的强表达,以及对Stx的剂量依赖性毒性,其中很大一部分来自于依赖于caspase的细胞死亡。使用葡萄糖酰胺合成酶抑制剂(GCSi)以破坏 Gb3 的合成途径为目标,可显著保护肾脏微血管细胞免受 Stx 损伤,细胞形态、Caspase 激活和 RNA 测序的转录分析均显示了这一点。重要的是,这些发现在流动状态下的三维工程肾微血管中得到了再现。此外,通过 Stx 处理过的微血管灌注全血会导致血管壁上明显的血小板结合,而 GCSi 的处理则显著减少了这种结合。这些结果验证了生物工程人体外微血管模型在流动状态下再现 STEC-HUS 中相关血液-内皮相互作用的可行性和实用性。GCSi 提供的深度保护为在接近生理条件的人体组织中进行临床前研究提供了机会。此外,这项工作还为TMA损伤发病机制和治疗的新研究奠定了广泛的基础。洞察方框:志贺毒素(Stx)会造成内皮损伤,导致儿科重大疾病的发病率和死亡率,但目前还没有有效的靶向疗法。本文利用人体肾脏微血管细胞,在二维培养和流动介导的三维微血管中研究了Stx介导的细胞死亡,受伤的微血管在灌注血液时还会出现明显的血小板结合和血栓形成,这与HUS的临床表现一致。针对志贺毒素受体合成途径的小分子抑制剂可减轻这种损伤。我们的发现揭示了志贺毒素诱导的血管损伤,为广泛研究血栓性微血管病铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Shiga toxin-induced human renal-specific microvascular injury.

Shiga toxin (Stx) causes significant renal microvascular injury and kidney failure in the pediatric population, and an effective targeted therapy has yet to be demonstrated. Here we established a human kidney microvascular endothelial cell line for the study of Stx mediated injuries with respect to their morphologic, phenotypic, and transcriptional changes, and modeled Stx induced thrombotic microangiopathy (TMA) in flow-mediated 3D microvessels. Distinct from other endothelial cell lines, both isolated primary and immortalized human kidney microvascular endothelial cells demonstrate robust cell-surface expression of the Stx receptor Gb3, and concomitant dose-dependent toxicity to Stx, with significant contributions from caspase-dependent cell death. Use of a glucosylceramide synthase inhibitor (GCSi) to target disruption of the synthetic pathway of Gb3 resulted in remarkable protection of kidney microvascular cells from Stx injury, shown in both cellular morphologies, caspase activation and transcriptional analysis from RNA sequencing. Importantly, these findings are recapitulated in 3D engineered kidney microvessels under flow. Moreover, whole blood perfusion through Stx-treated microvessels led to marked platelet binding on the vessel wall, which was significantly reduced with the treatment of GCSi. These results validate the feasibility and utility of a bioengineered ex vivo human microvascular model under flow to recapitulate relevant blood-endothelial interactions in STEC-HUS. The profound protection afforded by GCSi demonstrates a preclinical opportunity for investigation in human tissue approximating physiologic conditions. Moreover, this work provides a broad foundation for novel investigation into TMA injury pathogenesis and treatment. Insight Box: Shiga toxin (Stx) causes endothelial injury that results in significant morbidity and mortality in the pediatric population, with no effective targeted therapy. This paper utilizes human kidney microvascular cells to examine Stx mediated cell death in both 2D culture and flow-mediated 3D microvessels, with injured microvessels also developing marked platelet binding and thrombi formation when perfused with blood, consistent with the clinical picture of HUS. This injury is abrogated with a small molecule inhibitor targeting the synthetic pathway of the Shiga toxin receptor. Our findings shed light onto Stx-induced vascular injuries and pave a way for broad investigation into thrombotic microangiopathies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Integrative Biology
Integrative Biology 生物-细胞生物学
CiteScore
4.90
自引率
0.00%
发文量
15
审稿时长
1 months
期刊介绍: Integrative Biology publishes original biological research based on innovative experimental and theoretical methodologies that answer biological questions. The journal is multi- and inter-disciplinary, calling upon expertise and technologies from the physical sciences, engineering, computation, imaging, and mathematics to address critical questions in biological systems. Research using experimental or computational quantitative technologies to characterise biological systems at the molecular, cellular, tissue and population levels is welcomed. Of particular interest are submissions contributing to quantitative understanding of how component properties at one level in the dimensional scale (nano to micro) determine system behaviour at a higher level of complexity. Studies of synthetic systems, whether used to elucidate fundamental principles of biological function or as the basis for novel applications are also of interest.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信