{"title":"Pros and Cons of Long-Chain Omega-3 Polyunsaturated Fatty Acids in Cardiovascular Health.","authors":"Ivana Djuricic, Philip C Calder","doi":"10.1146/annurev-pharmtox-051921-090208","DOIUrl":"10.1146/annurev-pharmtox-051921-090208","url":null,"abstract":"<p><p>The long-chain omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), are found in seafood, supplements, and concentrated pharmaceutical preparations. Prospective cohort studies demonstrate an association between higher intakes of EPA+DHA or higher levels of EPA and DHA in the body and lower risk of developing cardiovascular disease (CVD), especially coronary heart disease and myocardial infarction, and of cardiovascular mortality in the general population. The cardioprotective effect of EPA and DHA is due to the beneficial modulation of a number of risk factors for CVD. Some large trials support the use of EPA+DHA (or EPA alone) in high-risk patients, although the evidence is inconsistent. This review presents key studies of EPA and DHA in the primary and secondary prevention of CVD, briefly describes potential mechanisms of action, and discusses recently published RCTs and meta-analyses. Potential adverse aspects of long-chain omega-3 fatty acids in relation to CVD are discussed.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9126125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Aspirin a Day: New Pharmacological Developments and Cancer Chemoprevention.","authors":"David G Menter, Robert S Bresalier","doi":"10.1146/annurev-pharmtox-052020-023107","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-052020-023107","url":null,"abstract":"<p><p>Chemoprevention refers to the use of natural or synthetic agents to reverse, suppress, or prevent the progression or recurrence of cancer. A large body of preclinical and clinical data suggest the ability of aspirin to prevent precursor lesions and cancers, but much of the clinical data are inferential and based on descriptive epidemiology, case control, and cohort studies or studies designed to answer other questions (e.g., cardiovascular mortality). Multiple pharmacological, clinical, and epidemiologic studies suggest that aspirin can prevent certain cancers but may also cause other effects depending on the tissue or disease and organ site in question. The best-known biological targets of aspirin are cyclooxygenases, which drive a wide variety of functions, including hemostasis, inflammation, and immune modulation. Newly recognized molecular and cellular interactions suggest additional modifiable functional targets, and the existence of consensus molecular cancer subtypes suggests that aspirin may have differential effects based on tumor heterogeneity. This review focuses on new pharmacological developments and innovations in biopharmacology that clarify the potential role of aspirin in cancer chemoprevention.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10572248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Delightful Trip Along the Pathway of Cannabinoid and Endocannabinoid Chemistry and Pharmacology.","authors":"Raphael Mechoulam","doi":"10.1146/annurev-pharmtox-051921-083709","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-051921-083709","url":null,"abstract":"<p><p>After a traumatic childhood in Europe during the Second World War, I found that scientific research in Israel was a pleasure beyond my expectations. Over the last 65 year, I have worked on the chemistry and pharmacology of natural products. During the last few decades, most of my research has been on plant cannabinoids, the endogenous cannabinoids arachidonoyl ethanolamide (anandamide) and 2-arachidonoyl glycerol, and endogenous anandamide-like compounds, all of which are involved in a wide spectrum of physiological reactions. Two plant cannabinoids, Δ<sup>9</sup>-tetrahydrocannabinol and cannabidiol, are approved drugs. However, the endogenous cannabinoids and the anandamide-like constituents have not yet been well investigated in humans. For me, intellectual freedom-the ability to do research based on my own scientific interests-has been the most satisfying part of my working life. Looking back over the 91 years of my long life, I conclude that I have been lucky, very lucky, both personally and scientifically.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10624816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matteo Castrichini, Jasmine A Luzum, Naveen Pereira
{"title":"Pharmacogenetics of Antiplatelet Therapy.","authors":"Matteo Castrichini, Jasmine A Luzum, Naveen Pereira","doi":"10.1146/annurev-pharmtox-051921-092701","DOIUrl":"10.1146/annurev-pharmtox-051921-092701","url":null,"abstract":"<p><p>Antiplatelet therapy is used in the treatment of patients with acute coronary syndromes, stroke, and those undergoing percutaneous coronary intervention. Clopidogrel is the most widely used antiplatelet P2Y12 inhibitor in clinical practice. Genetic variation in <i>CYP2C19</i> may influence its enzymatic activity, resulting in individuals who are carriers of loss-of-function <i>CYP2C19</i> alleles and thus have reduced active clopidogrel metabolites, high on-treatment platelet reactivity, and increased ischemic risk. Prospective studies have examined the utility of <i>CYP2C19</i> genetic testing to guide antiplatelet therapy, and more recently published meta-analyses suggest that pharmacogenetics represents a key treatment strategy to individualize antiplatelet therapy. Rapid genetic tests, including bedside genotyping platforms that are validated and have high reproducibility, are available to guide selection of P2Y12 inhibitors in clinical practice. The aim of this review is to provide an overview of the background and rationale for the role of a guided antiplatelet approach to enhance patient care.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":null,"pages":null},"PeriodicalIF":11.2,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10606443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahrzad Ghazisaeidi, Milind M Muley, Michael W Salter
{"title":"Neuropathic Pain: Mechanisms, Sex Differences, and Potential Therapies for a Global Problem.","authors":"Shahrzad Ghazisaeidi, Milind M Muley, Michael W Salter","doi":"10.1146/annurev-pharmtox-051421-112259","DOIUrl":"10.1146/annurev-pharmtox-051421-112259","url":null,"abstract":"<p><p>The study of chronic pain continues to generate ever-increasing numbers of publications, but safe and efficacious treatments for chronic pain remain elusive. Recognition of sex-specific mechanisms underlying chronic pain has resulted in a surge of studies that include both sexes. A predominant focus has been on identifying sex differences, yet many newly identified cellular mechanisms and alterations in gene expression are conserved between the sexes. Here we review sex differences and similarities in cellular and molecular signals that drive the generation and resolution of neuropathic pain. The mix of differences and similarities reflects degeneracy in peripheral and central signaling processes by which neurons, immune cells, and glia codependently drive pain hypersensitivity. Recent findings identifying critical signaling nodes foreshadow the development of rationally designed, broadly applicable analgesic strategies. However, the paucity of effective, safe pain treatments compels targeted therapies as well to increase therapeutic options that help reduce the global burden of suffering.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9126126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Arun Samidurai, Lei Xi, Anindita Das, Rakesh C Kukreja
{"title":"Beyond Erectile Dysfunction: cGMP-Specific Phosphodiesterase 5 Inhibitors for Other Clinical Disorders.","authors":"Arun Samidurai, Lei Xi, Anindita Das, Rakesh C Kukreja","doi":"10.1146/annurev-pharmtox-040122-034745","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-040122-034745","url":null,"abstract":"<p><p>Cyclic guanosine monophosphate (cGMP), an important intracellular second messenger, mediates cellular functional responses in all vital organs. Phosphodiesterase 5 (PDE5) is one of the 11 members of the cyclic nucleotide phosphodiesterase (PDE) family that specifically targets cGMP generated by nitric oxide-driven activation of the soluble guanylyl cyclase. PDE5 inhibitors, including sildenafil and tadalafil, are widely used for the treatment of erectile dysfunction, pulmonary arterial hypertension, and certain urological disorders. Preclinical studies have shown promising effects of PDE5 inhibitors in the treatment of myocardial infarction, cardiac hypertrophy, heart failure, cancer and anticancer-drug-associated cardiotoxicity, diabetes, Duchenne muscular dystrophy, Alzheimer's disease, and other aging-related conditions. Many clinical trials with PDE5 inhibitors have focused on the potential cardiovascular, anticancer, and neurological benefits. In this review, we provide an overview of the current state of knowledge on PDE5 inhibitors and their potential therapeutic indications for various clinical disorders beyond erectile dysfunction.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9792553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oscar E Reyes Gaido, Lubika J Nkashama, Kate L Schole, Qinchuan Wang, Priya Umapathi, Olurotimi O Mesubi, Klitos Konstantinidis, Elizabeth D Luczak, Mark E Anderson
{"title":"CaMKII as a Therapeutic Target in Cardiovascular Disease.","authors":"Oscar E Reyes Gaido, Lubika J Nkashama, Kate L Schole, Qinchuan Wang, Priya Umapathi, Olurotimi O Mesubi, Klitos Konstantinidis, Elizabeth D Luczak, Mark E Anderson","doi":"10.1146/annurev-pharmtox-051421-111814","DOIUrl":"10.1146/annurev-pharmtox-051421-111814","url":null,"abstract":"<p><p>CaMKII (the multifunctional Ca<sup>2+</sup> and calmodulin-dependent protein kinase II) is a highly validated signal for promoting a variety of common diseases, particularly in the cardiovascular system. Despite substantial amounts of convincing preclinical data, CaMKII inhibitors have yet to emerge in clinical practice. Therapeutic inhibition is challenged by the diversity of CaMKII isoforms and splice variants and by physiological CaMKII activity that contributes to learning and memory. Thus, uncoupling the harmful and beneficial aspects of CaMKII will be paramount to developing effective therapies. In the last decade, several targeting strategies have emerged, including small molecules, peptides, and nucleotides, which hold promise in discriminating pathological from physiological CaMKII activity. Here we review the cellular and molecular biology of CaMKII, discuss its role in physiological and pathological signaling, and consider new findings and approaches for developing CaMKII therapeutics.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11019858/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9120748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Noncanonical Metabotropic Glutamate Receptor 5 Signaling in Alzheimer's Disease.","authors":"Khaled S Abd-Elrahman, Stephen S G Ferguson","doi":"10.1146/annurev-pharmtox-021821-091747","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-021821-091747","url":null,"abstract":"<p><p>Metabotropic glutamate receptor 5 (mGluR5) is ubiquitously expressed in brain regions responsible for memory and learning. It plays a key role in modulating rapid changes in synaptic transmission and plasticity. mGluR5 supports long-term changes in synaptic strength by regulating the transcription and translation of essential synaptic proteins. β-Amyloid 42 (Aβ42) oligomers interact with a mGluR5/cellular prion protein (PrP<sup>C</sup>) complex to disrupt physiological mGluR5 signal transduction. Aberrant mGluR5 signaling and associated synaptic failure are considered an emerging pathophysiological mechanism of Alzheimer's disease (AD). Therefore, mGluR5 represents an attractive therapeutic target for AD, and recent studies continue to validate the efficacy of various mGluR5 allosteric modulators in improving memory deficits and mitigating disease pathology. However, sex-specific differences in the pharmacology of mGluR5 and activation of noncanonical signaling downstream of the receptor suggest that its utility as a therapeutic target in female AD patients needs to be reconsidered.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39414454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Repurposing Colchicine for Heart Disease.","authors":"Nadia Bouabdallaoui, Jean-Claude Tardif","doi":"10.1146/annurev-pharmtox-052120-020445","DOIUrl":"https://doi.org/10.1146/annurev-pharmtox-052120-020445","url":null,"abstract":"<p><p>Colchicine is one of the most ancient medications still prescribed. It is extracted from the <i>Colchicum autumnale</i> plant and is routinely used because of its broad anti-inflammatory properties to treat gout and familial Mediterranean fever. Colchicine has shown efficacy in various clinical settings in which inflammation is a key component, and it has become first-line therapy for acute and recurrent pericarditis. Two landmark clinical trials have recently shown that colchicine significantly improves cardiovascular outcomes on background statin and antiplatelet therapy in patients with coronary artery disease, supporting its role for the prevention of atherothrombotic events. Favorable results have also emerged in atrial fibrillation. We herein briefly review the most recent data related to the multiple cardiovascular conditions for which colchicine has been successfully repurposed.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39471581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Oxidative Stress and Metabolism: A Mechanistic Insight for Glyphosate Toxicology.","authors":"Xiaojing Wang, Qirong Lu, Jingchao Guo, Irma Ares, Marta Martínez, María-Rosa Martínez-Larrañaga, Xu Wang, Arturo Anadón, María-Aránzazu Martínez","doi":"10.1146/annurev-pharmtox-020821-111552","DOIUrl":"10.1146/annurev-pharmtox-020821-111552","url":null,"abstract":"<p><p>Glyphosate (GLYP) is a widely used pesticide; it is considered to be a safe herbicide for animals and humans because it targets 5-enolpyruvylshikimate-3-phosphate synthase. However, there has been increasing evidence that GLYP causes varying degrees of toxicity. Moreover, oxidative stress and metabolism are highly correlated with toxicity. This review provides a comprehensive introduction to the toxicity of GLYP and, for the first time, systematically summarizes the toxicity mechanism of GLYP from the perspective of oxidative stress, including GLYP-mediated oxidative damage, changes in antioxidant status, altered signaling pathways, and the regulation of oxidative stress by exogenous substances. In addition, the metabolism of GLYP is discussed, including metabolites,metabolic pathways, metabolic enzymes, and the toxicity of metabolites. This review provides new ideas for the toxicity mechanism of GLYP and proposes effective strategies for reducing its toxicity.</p>","PeriodicalId":8057,"journal":{"name":"Annual review of pharmacology and toxicology","volume":null,"pages":null},"PeriodicalIF":12.5,"publicationDate":"2022-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39790088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}