Jie Ma, Ranran Xu, Wanxiang Li, Mi Liu, Xiaomei Ding
{"title":"Whole-genome sequencing of clinical isolates of Citrobacter Europaeus in China carrying blaOXA−48 and blaNDM−1","authors":"Jie Ma, Ranran Xu, Wanxiang Li, Mi Liu, Xiaomei Ding","doi":"10.1186/s12941-024-00699-y","DOIUrl":"https://doi.org/10.1186/s12941-024-00699-y","url":null,"abstract":"To analyze the clinical infection characteristics and genetic environments of resistance genes in carbapenem-resistant Citrobacter europaeus using whole-genome sequencing. The susceptibility of two clinical isolates of C. europaeus (WF0003 and WF1643) to 24 antimicrobial agents was assessed using the BD Phoenix™ M50 System and Kirby-Bauer (K-B) disk-diffusion method. Whole-genome sequencing was performed on the Illumina and Nanopore platforms, and ABRicate software was used to predict resistance and virulence genes of carbapenem-resistant C. europaeus. The characteristics of plasmids carrying carbapenem-resistance genes and their genetic environments were analyzed. Single nucleotide polymorphisms were used to construct a phylogenetic tree to analyze the homology of these two C. europaeus strains with ten strains of C. europaeus in the NCBI database. The two strains of carbapenem-resistant C. europaeus are resistant to various antimicrobial agents, particularly carbapenems and β-lactams. WF0003 carries blaNDM− 1, which is located on an IncX3 plasmid that has high homology to the pNDM-HN380 plasmid. blaNDM− 1 is located on a truncated Tn125. It differs from Tn125 by the insertion of IS5 in the upstream ISAba125 and the deletion of the downstream ISAba125, which is replaced by IS26. WF1643 carries blaOXA− 48 in a Tn1999 transposon on the IncL/M plasmid, carrying only that single drug resistance gene. Homology analysis of these two strains of C. europaeus with ten C. europaeus strains in the NCBI database revealed that the 12 strains can be classified into three clades, with both WF0003 and WF1643 in the B clade. To the best of our knowledge, this is the first study to report an IncX3 plasmid carrying blaNDM− 1 in C. europaeus in China. C. europaeus strains harboring carbapenem-resistance genes are concerning in relation to the spread of antimicrobial resistance, and the presence of carbapenem-resistance genes in C. europaeus should be continuously monitored.","PeriodicalId":8052,"journal":{"name":"Annals of Clinical Microbiology and Antimicrobials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140839378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Performances of two rapid LAMP-based techniques for the intrapartum detection of Group B Streptococcus vaginal colonization","authors":"Rym Charfi, Cécile Guyonnet, Meiggie Untrau, Gaëlle Giacometti, Thierry Paper, Claire Poyart, Céline Plainvert, Asmaa Tazi","doi":"10.1186/s12941-024-00695-2","DOIUrl":"https://doi.org/10.1186/s12941-024-00695-2","url":null,"abstract":"Group B Streptococcus (GBS) is the leading cause of invasive infections in newborns. The prevention of GBS neonatal disease relies on the administration of an intrapartum antibiotic prophylaxis to GBS-colonized women. In recent years, rapid intrapartum detection of GBS vaginal colonization using real-time nucleic acid amplification tests (NAATs) emerged as an alternative to antenatal culture screening methods. We compared the performances of two loop-mediated isothermal amplification (LAMP) tests, the Ampliflash® GBS and the PlusLife® GBS tests, to standard culture for GBS detection in vaginal specimens from pregnant women. The study was conducted from April to July 2023 in a French hospital of the Paris area. A total of 303 samples were analyzed, including 85 culture-positive samples (28.1%). The Ampliflash® GBS test and the PlusLife® GBS tests gave a result for 100% and 96.3% tests, respectively. The performances of the tests were as follows: sensitivity 87.1% (95% confidence interval (CI) 78.3–92.6) and 98.7% (95% CI 93.0-99.8), specificity 99.1% (95% CI 96.7–99.8), and 91.9% (95% CI 87.3–95.0), respectively. False negative results of the Ampliflash® GBS test correlated with low-density GBS cultures. Time-to-results correlated with GBS culture density only for the PlusLife® GBS test (p < 0.001). Both techniques provide excellent analytical performances with high sensitivity and specificity together with a short turnaround time and results available in 10 to 35 min. Their potential to further reduce the burden of GBS neonatal disease compared with antenatal culture screening needs to be assessed in future clinical studies.","PeriodicalId":8052,"journal":{"name":"Annals of Clinical Microbiology and Antimicrobials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140798776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dae Hyeon Cho, Si-Ho Kim, Cheon-hoo Jeon, Hyoung Tae Kim, Kyoung-Jin Park, Junyoung Kim, Jiyeong Kwak, B. Kwan, Sungmin Kong, Jung Won Lee, Kwang Min Kim, Y. Wi
{"title":"Clinical outcomes and treatment necessity in patients with toxin-negative Clostridioides difficile stool samples.","authors":"Dae Hyeon Cho, Si-Ho Kim, Cheon-hoo Jeon, Hyoung Tae Kim, Kyoung-Jin Park, Junyoung Kim, Jiyeong Kwak, B. Kwan, Sungmin Kong, Jung Won Lee, Kwang Min Kim, Y. Wi","doi":"10.1186/s12941-024-00696-1","DOIUrl":"https://doi.org/10.1186/s12941-024-00696-1","url":null,"abstract":"","PeriodicalId":8052,"journal":{"name":"Annals of Clinical Microbiology and Antimicrobials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140653931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nahid Madadi-Goli, Kamal Ahmadi, Mansour Kargarpour Kamakoli, Mohsen Azizi, Sharareh Khanipour, S. P. Dizaji, M. Nasehi, S. Siadat, A. Fateh, F. Vaziri
{"title":"The importance of heteroresistance and efflux pumps in bedaquiline-resistant Mycobacterium tuberculosis isolates from Iran.","authors":"Nahid Madadi-Goli, Kamal Ahmadi, Mansour Kargarpour Kamakoli, Mohsen Azizi, Sharareh Khanipour, S. P. Dizaji, M. Nasehi, S. Siadat, A. Fateh, F. Vaziri","doi":"10.1186/s12941-024-00694-3","DOIUrl":"https://doi.org/10.1186/s12941-024-00694-3","url":null,"abstract":"","PeriodicalId":8052,"journal":{"name":"Annals of Clinical Microbiology and Antimicrobials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140658036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oscar Backrud, Erik Engberg, Kristina Nyberg, Peter Wieslander, Edward R. B. Moore
{"title":"Chromobacterium sp. septicemia in Sweden. A clinical case report","authors":"Oscar Backrud, Erik Engberg, Kristina Nyberg, Peter Wieslander, Edward R. B. Moore","doi":"10.1186/s12941-024-00692-5","DOIUrl":"https://doi.org/10.1186/s12941-024-00692-5","url":null,"abstract":"Chromobacterium is a genus of fourteen species with validly published names, most often found in soil and waters in tropical and subtropical regions around the world. The most well-known species of the genus, C. violaceum, occasionally causes clinically relevant infections; cases of soft tissue infections with septicemia and fatal outcomes have been described. Here, we present a clinical case report of a 79-year-old man from Sweden with a soft-tissue infection and septicemia. The pathogen was identified as a strain of Chromobacterium species, but not C. violaceum. The patient was treated with clindamycin and ciprofloxacin and recovered well. This case report demonstrates the potential of Chromobacterium species as infectious agents in immunocompetent patients. It also indicates the existence of a novel species.","PeriodicalId":8052,"journal":{"name":"Annals of Clinical Microbiology and Antimicrobials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140625007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antimicrobial resistance prediction by clinical metagenomics in pediatric severe pneumonia patients","authors":"Mingyu Gan, Yanyan Zhang, Gangfeng Yan, Yixue Wang, Guoping Lu, Bingbing Wu, Weiming Chen, Wenhao Zhou","doi":"10.1186/s12941-024-00690-7","DOIUrl":"https://doi.org/10.1186/s12941-024-00690-7","url":null,"abstract":"Antimicrobial resistance (AMR) is a major threat to children’s health, particularly in respiratory infections. Accurate identification of pathogens and AMR is crucial for targeted antibiotic treatment. Metagenomic next-generation sequencing (mNGS) shows promise in directly detecting microorganisms and resistance genes in clinical samples. However, the accuracy of AMR prediction through mNGS testing needs further investigation for practical clinical decision-making. We aimed to evaluate the performance of mNGS in predicting AMR for severe pneumonia in pediatric patients. We conducted a retrospective analysis at a tertiary hospital from May 2022 to May 2023. Simultaneous mNGS and culture were performed on bronchoalveolar lavage fluid samples obtained from pediatric patients with severe pneumonia. By comparing the results of mNGS detection of microorganisms and antibiotic resistance genes with those of culture, sensitivity, specificity, positive predictive value, and negative predictive value were calculated. mNGS detected bacterial in 71.7% cases (86/120), significantly higher than culture (58/120, 48.3%). Compared to culture, mNGS demonstrated a sensitivity of 96.6% and a specificity of 51.6% in detecting pathogenic microorganisms. Phenotypic susceptibility testing (PST) of 19 antibiotics revealed significant variations in antibiotics resistance rates among different bacteria. Sensitivity prediction of mNGS for carbapenem resistance was higher than penicillins and cephalosporin (67.74% vs. 28.57%, 46.15%), while specificity showed no significant difference (85.71%, 75.00%, 75.00%). mNGS also showed a high sensitivity of 94.74% in predicting carbapenem resistance in Acinetobacter baumannii. mNGS exhibits variable predictive performance among different pathogens and antibiotics, indicating its potential as a supplementary tool to conventional PST. However, mNGS currently cannot replace conventional PST.","PeriodicalId":8052,"journal":{"name":"Annals of Clinical Microbiology and Antimicrobials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chongyang Wu, Li Xiong, Quanfeng Liao, Weili Zhang, Yuling Xiao, Yi Xie
{"title":"Clinical manifestations, antimicrobial resistance and genomic feature analysis of multidrug-resistant Elizabethkingia strains","authors":"Chongyang Wu, Li Xiong, Quanfeng Liao, Weili Zhang, Yuling Xiao, Yi Xie","doi":"10.1186/s12941-024-00691-6","DOIUrl":"https://doi.org/10.1186/s12941-024-00691-6","url":null,"abstract":"Elizabethkingia is emerging as an opportunistic pathogen in humans. The aim of this study was to investigate the clinical epidemiology, antimicrobial susceptibility, virulence factors, and genome features of Elizabethkingia spp. Clinical data from 71 patients who were diagnosed with Elizabethkingia-induced pneumonia and bacteremia between August 2019 and September 2021 were analyzed. Whole-genome sequencing was performed on seven isolates, and the results were compared with a dataset of 83 available Elizabethkingia genomes. Genomic features, Kyoto Encyclopedia of Genes and Genomes (KEGG) results and clusters of orthologous groups (COGs) were analyzed. The mean age of the patients was 56.9 ± 20.7 years, and the in-hospital mortality rate was 29.6% (21/71). Elizabethkingia strains were obtained mainly from intensive care units (36.6%, 26/71) and emergency departments (32.4%, 23/71). The majority of the strains were isolated from respiratory tract specimens (85.9%, 61/71). All patients had a history of broad-spectrum antimicrobial exposure. Hospitalization for invasive mechanical ventilation or catheter insertion was found to be a risk factor for infection. The isolates displayed a high rate of resistance to cephalosporins and carbapenems, but all were susceptible to minocycline and colistin. Genomic analysis identified five β-lactamase genes (blaGOB, blaBlaB, blaCME, blaOXA, and blaTEM) responsible for β-lactam resistance and virulence genes involved in stress adaptation (ureB/G, katA/B, and clpP), adherence (groEL, tufA, and htpB) and immune modulation (gmd, tviB, cps4J, wbtIL, cap8E/D/G, and rfbC). Functional analysis of the COGs revealed that “metabolism” constituted the largest category within the core genome, while “information storage and processing” was predominant in both the accessory and unique genomes. The unique genes in our 7 strains were mostly enriched in KEGG pathways related to microRNAs in cancer, drug resistance (β-lactam and vancomycin), ABC transporters, biological metabolism and biosynthesis, and nucleotide excision repair mechanisms. The Elizabethkingia genus exhibits multidrug resistance and carries carbapenemase genes. This study presents a comparative genomic analysis of Elizabethkingia, providing knowledge that facilitates a better understanding of this microorganism.","PeriodicalId":8052,"journal":{"name":"Annals of Clinical Microbiology and Antimicrobials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Reham Talaat, Mohamed N. Abu El-naga, Heba Abd Alla El-Bialy, Mohie Z. El-Fouly, Mohamed A. Abouzeid
{"title":"Quenching of quorum sensing in multi-drug resistant Pseudomonas aeruginosa: insights on halo-bacterial metabolites and gamma irradiation as channels inhibitors","authors":"Reham Talaat, Mohamed N. Abu El-naga, Heba Abd Alla El-Bialy, Mohie Z. El-Fouly, Mohamed A. Abouzeid","doi":"10.1186/s12941-024-00684-5","DOIUrl":"https://doi.org/10.1186/s12941-024-00684-5","url":null,"abstract":"Anti-virulence therapy is a promising strategy to treat multi-drug resistant (MDR) pathogens. Pseudomonas aeruginosa is a potent opportunistic pathogen because of an array of virulence factors that are regulated by quorum sensing systems. The virulence features of four multi-drug resistant P. aeruginosa strains were investigated upon exposure to the sub-lethal dose of gamma rays (1 kGy), and sub-inhibitory concentrations of bioactive metabolites recovered from local halophilic strains in comparison to control. Then, the gene expression of AHL-mediated quorum sensing systems (las/rhl) was quantitatively determined in treated and untreated groups by real-time PCR. The bioactive metabolites recovered from halophilic strains previously isolated from saline ecosystems were identified as Halomonas cupida (Halo-Rt1), H. elongate (Halo-Rt2), Vigibacillus natechei (Halo-Rt3), Sediminibacillus terrae (Halo-Rt4) and H. almeriensis (Halo-Rt5). Results revealed that both gamma irradiation and bioactive metabolites significantly reduced the virulence factors of the tested MDR strains. The bioactive metabolites showed a maximum efficiency for inhibiting biofilm formation and rhamnolipids production whereas the gamma irradiation succeeded in decreasing other virulence factors to lower levels in comparison to control. Quantitative-PCR results showed that AHL-mediated quorum sensing systems (las/rhl) in P. aeruginosa strains were downregulated either by halo-bacterial metabolites or gamma irradiation in all treatments except the upregulation of both lasI internal gene and rhlR intact gene in P. aeruginosa NCR-RT3 and both rhlI internal gene and rhlR intact gene in P. aeruginosa U3 by nearly two folds or more upon exposure to gamma irradiation. The most potent result was observed in the expression of lasI internal gene that was downregulated by more than ninety folds in P. aeruginosa NCR-RT2 after treatment with metabolites of S. terrae (Halo-Rt4). Analyzing metabolites recovered from H. cupida (Halo-Rt1) and H. elongate (Halo-Rt2) using LC–ESI–MS/MS revealed many chemical compounds that have quorum quenching properties including glabrol, 5,8-dimethoxyquinoline-2-carbaldehyde, linoleoyl ethanolamide, agelasine, penigequinolones derivatives, berberine, tetracosanoic acid, and liquidambaric lactone in the former halophile and phloretin, lycoctonine, fucoxanthin, and crassicauline A in the latter one. QS inhibitors can significantly reduce the pathogenicity of MDR P. aeruginosa strains; and thus can be an effective and successful strategy for treating antibiotic resistant traits.","PeriodicalId":8052,"journal":{"name":"Annals of Clinical Microbiology and Antimicrobials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development of a novel sequence based real-time PCR assay for specific and sensitive detection of Burkholderia pseudomallei in clinical and environmental matrices","authors":"Pranjal Kumar Yadav, Suchetna Singh, Moumita Paul, Sanjay Kumar, S. Ponmariappan, Duraipandian Thavaselvam","doi":"10.1186/s12941-024-00693-4","DOIUrl":"https://doi.org/10.1186/s12941-024-00693-4","url":null,"abstract":"Melioidosis, caused by the category B biothreat agent Burkholderia pseudomallei, is a disease with a high mortality rate and requires an immediate culture-independent diagnosis for effective disease management. In this study, we developed a highly sensitive qPCR assay for specific detection of Burkholderia pseudomallei and melioidosis disease diagnosis based on a novel target sequence. An extensive in-silico analysis was done to identify a novel and highly conserved sequence for developing a qPCR assay. The specificity of the developed assay was analyzed with 65 different bacterial cultures, and the analytical sensitivity of the assay was determined with the purified genomic DNA of B. pseudomallei. The applicability of the assay for B. pseudomallei detection in clinical and environmental matrices was evaluated by spiking B. pseudomallei cells in the blood, urine, soil, and water along with suitable internal controls. A novel 85-nucleotide-long sequence was identified using in-silico tools and employed for the development of the highly sensitive and specific quantitative real-time PCR assay S664. The assay S664 was found to be highly specific when evaluated with 65 different bacterial cultures related and non-related to B. pseudomallei. The assay was found to be highly sensitive, with a detection limit of 3 B. pseudomallei genome equivalent copies per qPCR reaction. The detection limit in clinical matrices was found to be 5 × 102 CFU/mL for both human blood and urine. In environmental matrices, the detection limit was found to be 5 × 101 CFU/mL of river water and 2 × 103 CFU/gm of paddy field soil. The findings of the present study suggest that the developed assay S664 along with suitable internal controls has a huge diagnostic potential and can be successfully employed for specific, sensitive, and rapid molecular detection of B. pseudomallei in various clinical and environmental matrices.","PeriodicalId":8052,"journal":{"name":"Annals of Clinical Microbiology and Antimicrobials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yu Jeong Choi, Yoonjung Kim, Hye Jung Park, Dokyun Kim, Hyukmin Lee, Young Ah Kim, Kyung-A Lee
{"title":"Development of a multiplex droplet digital PCR method for detection and monitoring of Mycobacterium tuberculosis and drug-resistant tuberculosis","authors":"Yu Jeong Choi, Yoonjung Kim, Hye Jung Park, Dokyun Kim, Hyukmin Lee, Young Ah Kim, Kyung-A Lee","doi":"10.1186/s12941-024-00687-2","DOIUrl":"https://doi.org/10.1186/s12941-024-00687-2","url":null,"abstract":"The prevalence of multidrug-resistant tuberculosis (MDR-TB) among Korean tuberculosis patients is about 4.1%, which is higher than the OECD average of 2.6%. Inadequate drug use and poor patient compliance increase MDR-TB prevalence through selective pressure. Therefore, prompt detection of drug resistance in tuberculosis patients at the time of diagnosis and quantitative monitoring of these resistant strains during treatment are crucial. A multiplex droplet digital PCR (ddPCR) assay was developed and assessed using DNA material of nine Mycobacterium tuberculosis strains with known mutation status that were purchased from the Korean National Tuberculosis Association. We collected a total of 18 MDR-TB residual samples referred for PCR analysis. Total DNA was extracted from the samples and subjected to the quadruplex ddPCR assay. Their results were compared to those of known resistance phenotypes. The analytical sensitivity and specificity of the multiplex ddPCR assay for detecting INH, RIF, EMB, FQ, and SM resistance-causing mutations ranged from 71.43 to 100% and 94.12–100%, respectively. Follow-up sample results showed that the quadruplex ddPCR assay was sensitive enough to detect IS6110 and other mutations even after onset of treatment. We developed a sensitive and accurate multiplex ddPCR assay that can detect the presence of tuberculosis quantitatively and resistance-conveying mutations concurrently. This tool could aid clinicians in the diagnosis and treatment monitoring of tuberculosis.","PeriodicalId":8052,"journal":{"name":"Annals of Clinical Microbiology and Antimicrobials","volume":null,"pages":null},"PeriodicalIF":5.7,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140594340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}