Applied Mechanics Reviews最新文献

筛选
英文 中文
Free-Form Deformation Parameterization on the Aerodynamic Optimization of Morphing Trailing Edge 变形后缘气动优化中的自由变形参数化
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-28 DOI: 10.3390/applmech4010017
M. Negahban, M. Bashir, R. Botez
{"title":"Free-Form Deformation Parameterization on the Aerodynamic Optimization of Morphing Trailing Edge","authors":"M. Negahban, M. Bashir, R. Botez","doi":"10.3390/applmech4010017","DOIUrl":"https://doi.org/10.3390/applmech4010017","url":null,"abstract":"Every aerodynamic optimization is proceeded by a parameterization of the studied aerial object, and due to its influence on the final optimization process, careful attention should be made in choosing the appropriate parameterization method. An aerodynamic optimization of a morphing trailing edge is performed using a free-form deformation parameterization technique with the purpose of examining the influence of the initial conditions of the parameterization on the optimization results, namely on the number of control points. High-fidelity gradient-based optimization using the discrete adjoint method is established by the coupling of OpenFOAM and Python within the DAFoam optimization framework. The results indicate that the number of control points has a considerable effect on the optimization process, in particular on the convergence, objective function value, and on the deformation feasibility.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79769506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Prediction of Effective Elastic and Thermal Properties of Heterogeneous Materials Using Convolutional Neural Networks 利用卷积神经网络预测非均质材料的有效弹性和热性能
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-27 DOI: 10.3390/applmech4010016
H. Béji, T. Kanit, T. Messager
{"title":"Prediction of Effective Elastic and Thermal Properties of Heterogeneous Materials Using Convolutional Neural Networks","authors":"H. Béji, T. Kanit, T. Messager","doi":"10.3390/applmech4010016","DOIUrl":"https://doi.org/10.3390/applmech4010016","url":null,"abstract":"The aim of this study is to develop a new method to predict the effective elastic and thermal behavior of heterogeneous materials using Convolutional Neural Networks CNN. This work consists first of all in building a large database containing microstructures of two phases of heterogeneous material with different shapes (circular, elliptical, square, rectangular), volume fractions of the inclusion (20%, 25%, 30%), and different contrasts between the two phases in term of Young modulus and also thermal conductivity. The contrast expresses the degree of heterogeneity in the heterogeneous material, when the value of C is quite important (C >> 1) or quite low (C << 1), it means that the material is extremely heterogeneous, while C= 1, the material becomes totally homogeneous. In the case of elastic properties, the contrast is expressed as the ratio between Young’s modulus of the inclusion and that of the matrix ( C = EiEm), while for thermal properties, this ratio is expressed as a function of the thermal conductivity of both phases (C = λiλm). In our work, the model will be tested on two values of contrast (10 and 100). These microstructures will be used to estimate the elastic and thermal behavior by calculating the effective bulk, shear, and thermal conductivity values using a finite element method. The collected databases will be trained and tested on a deep learning model composed of a first convolutional network capable of extracting features and a second fully connected network that allows, through these parameters, the adjustment of the error between the found output and the expected one. The model was verified using a Mean Absolute Percentage Error (MAPE) loss function. The prediction results were excellent, with a prediction score between 92% and 98%, which justifies the good choice of the model parameters.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84378269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Special Issue of Applied Mechanics Reviews in Collaboration with the Journal of Electrochemical Energy Conversion and Storage 与电化学能量转换与存储杂志合作出版的《应用力学评论》特刊
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-24 DOI: 10.1115/1.4056961
H. Dankowicz, W. Chiu
{"title":"Special Issue of Applied Mechanics Reviews in Collaboration with the Journal of Electrochemical Energy Conversion and Storage","authors":"H. Dankowicz, W. Chiu","doi":"10.1115/1.4056961","DOIUrl":"https://doi.org/10.1115/1.4056961","url":null,"abstract":"","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80047678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of Heterogeneous Beams with Three Supports—Solutions Using Integral Equations 三支承非均质梁的稳定性——用积分方程求解
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-22 DOI: 10.3390/applmech4010015
L. Kiss, A. Messaoudi, G. Szeidl
{"title":"Stability of Heterogeneous Beams with Three Supports—Solutions Using Integral Equations","authors":"L. Kiss, A. Messaoudi, G. Szeidl","doi":"10.3390/applmech4010015","DOIUrl":"https://doi.org/10.3390/applmech4010015","url":null,"abstract":"It is our main objective to find the critical load for three beams with cross sectional heterogeneity. Each beam has three supports, of which the intermediate one is a spring support. Determination of the critical load for these beams leads to three point boundary value problems (BVPs) associated with homogeneous boundary conditions—the mentioned BVPs constitute three eigenvalue problems. They are solved by using a novel solution strategy based on the Green functions that belong to these BVPs: the eigenvalue problems established for the critical load are transformed into eigenvalue problems governed by homogeneous Fredholm integral equations with kernels that can be given in closed forms provided that the Green function of each BVP is known. Then the eigenvalue problems governed by the Fredholm integral equations can be manipulated into algebraic eigenvalue problems solved numerically by using effective algorithms. It is an advantage of the way we attack these problems that the formalism established and the results obtained remain valid for homogeneous beams as well. The numerical results for the critical forces can be applied to solve some stability problems in the engineering practice.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75631066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kirchhoff’s Analogy between the Kapitza Pendulum Stability and Buckling of a Wavy Beam under Tensile Loading Kirchhoff对Kapitza摆稳定性和波浪梁在拉伸载荷下屈曲的类比
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-21 DOI: 10.3390/applmech4010014
Rahul Ramachandran, Michael Nosonovsky
{"title":"Kirchhoff’s Analogy between the Kapitza Pendulum Stability and Buckling of a Wavy Beam under Tensile Loading","authors":"Rahul Ramachandran, Michael Nosonovsky","doi":"10.3390/applmech4010014","DOIUrl":"https://doi.org/10.3390/applmech4010014","url":null,"abstract":"The Kirchhoff analogy between the oscillation of a pendulum (in the time domain) and the static bending of an elastic beam (in the spatial domain) is applied to the stability analysis of an inverted pendulum on a vibrating foundation (the Kapitza pendulum). The inverted pendulum is stabilized if the frequency and amplitude of the vibrating foundation exceed certain critical values. The system is analogous to static bending a wavy (patterned) beam subjected to a tensile load with appropriate boundary conditions. We analyze the buckling stability of such a wavy beam, which is governed by the Mathieu equation. Micro/nanopatterned structures and surfaces have various applications including the control of adhesion, friction, wettability, and surface-pattern-induced phase control.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2023-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81643605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shear Deterioration of the Hierarchical Structure of Cellulose Microfibrils under Water Condition: All-Atom Molecular Dynamics Analysis 水条件下纤维素微原纤维层次结构的剪切劣化:全原子分子动力学分析
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-19 DOI: 10.3390/applmech4010013
Y. Izumi, K. Saitoh, Tomohiro Sato, M. Takuma, Y. Takahashi
{"title":"Shear Deterioration of the Hierarchical Structure of Cellulose Microfibrils under Water Condition: All-Atom Molecular Dynamics Analysis","authors":"Y. Izumi, K. Saitoh, Tomohiro Sato, M. Takuma, Y. Takahashi","doi":"10.3390/applmech4010013","DOIUrl":"https://doi.org/10.3390/applmech4010013","url":null,"abstract":"This study aims to understand the mechanical properties of cellulose nanofibers (CNFs), a nano-sized material element of woods or plants. We develop all-atom (AA) molecular dynamics models of cellulose microfibrils (CMFs), which are the smallest constituent of CNFs. The models were designed for the process of structural failure or the degradation of a hierarchical material of multiple CMF fibers, due to shear deformation. It was assumed that two CMFs were arranged in parallel and in close contact, either in a vacuum or in water. The CMF models in water were built by surrounding AA-modeled water molecules with a few nanometers. Shear deformation was applied in the axial direction of the CMF or in the direction parallel to molecular sheets. Shear moduli were measured, and they agree with previous experimental and computational values. The presence of water molecules reduced the elastic modulus, because of the behavior of water molecules at the interface between CMFs as a function of temperature. In the inelastic region, the CMF often broke down inside CMFs in a vacuum condition. However, in water environments, two CMFs tend to slip away from each other at the interface. Water molecules act like a lubricant between multiple CMFs and promote smooth sliding.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2023-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82506992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Failure Strength of Automotive Steering Knuckle Made of Metal Matrix Composite 金属基复合材料汽车转向节失效强度研究
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-12 DOI: 10.3390/applmech4010012
K. Reza Kashyzadeh
{"title":"Failure Strength of Automotive Steering Knuckle Made of Metal Matrix Composite","authors":"K. Reza Kashyzadeh","doi":"10.3390/applmech4010012","DOIUrl":"https://doi.org/10.3390/applmech4010012","url":null,"abstract":"This article presents the static performance of composite steering knuckle due to drive on an equivalent road, including different types of roughness and maneuvers. To achieve this purpose, the driving of a full-vehicle model was simulated using the multi-body dynamics (MBD) method, and the imposed loads on connection points of the steering knuckle to different components of the suspension system were extracted considering various maneuvers. Next, CATIA software was used to prepare a smooth model of the steering knuckle by employing coordinate measuring machine (CMM) data. Stress analysis was performed under the maximum value of the loading history in finite element (FE) software. Eventually, the safety factor was calculated based on some well-known criteria for static failure of the composite materials. Moreover, the optimum value of tungsten carbide as a reinforcing substance in aluminum composite was estimated to increase failure strength. The results show that an increase in tungsten carbide leads to an increase in the strength of the steering knuckle under purely axial loads (normal stress criterion) and also that an increase in this substance leads to a decrease in the strength of the part under shear loads (shear stress criterion). Therefore, based on the nature of the loads (i.e., multi-axial non-proportional random amplitude loading conditions) applied to the automotive steering knuckle due to actual conditions, this metal matrix composite (aluminum matrix and tungsten carbide as reinforcement) is not practical.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90099089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A Perspective Review of Passive Techniques Applied to Control the Swirling Flow Instabilities From The Conical Diffuser of Hydraulic Turbines 控制水轮机锥形扩散器旋流不稳定性的被动技术综述
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-09 DOI: 10.1115/1.4056895
C. Tănasă, A. Bosioc, A. Stuparu, S. Muntean, R. Susan-Resiga
{"title":"A Perspective Review of Passive Techniques Applied to Control the Swirling Flow Instabilities From The Conical Diffuser of Hydraulic Turbines","authors":"C. Tănasă, A. Bosioc, A. Stuparu, S. Muntean, R. Susan-Resiga","doi":"10.1115/1.4056895","DOIUrl":"https://doi.org/10.1115/1.4056895","url":null,"abstract":"\u0000 This paper represents a welcome synthesis of the results obtained by the authors over more than a decade. The reason why such an approach is perfectly justified is found in the novelty of the control techniques of decelerated swirling flows from the conical diffuser of hydraulic turbines. The results presented in this paper refer strictly to the new passive control techniques of the swirling flows instabilities. Although the results of these new techniques have been disseminated in various papers, it is difficult to outline an overview from a collection of articles. Therefore, the present paper achieves a welcome unitary synthesis, useful to specialists in the field of turbomachines hydrodynamics. The reluctance of the turbine manufacturers on active control techniques that use external/additional energy source, led us to the choice of passive control techniques review, especially the ones developed in the last years. The first part of the paper analyzes the specialized literature that includes a variety of passive solutions for mitigating self-induced instabilities of decelerated swirling flow downstream of hydraulic turbines. Such inherent instabilities manifest intensely at far from optimal operating regimes, and represent one of the challenges of modern hydraulic turbines. The mitigation of these instabilities is an open problem, so far there are no unanimously accepted technical solutions implemented on prototype turbines. The second part of the paper includes detailed investigations on axial water injection with flow-feedback, but also more recent approaches using adjustable diaphragm in the conical diffuser.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81314672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Euler–Euler Multi-Scale Simulations of Internal Boiling Flow with Conjugated Heat Transfer 具有共轭传热的内部沸腾流动的欧拉-欧拉多尺度模拟
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-06 DOI: 10.3390/applmech4010011
E. Butaye, A. Toutant, S. Mer
{"title":"Euler–Euler Multi-Scale Simulations of Internal Boiling Flow with Conjugated Heat Transfer","authors":"E. Butaye, A. Toutant, S. Mer","doi":"10.3390/applmech4010011","DOIUrl":"https://doi.org/10.3390/applmech4010011","url":null,"abstract":"A numerical approach was implemented, to study a boiling flow in a horizontal serpentine tube. A NEPTUNE_CFD two-fluid model was used, to study the behavior of the refrigerant R141b in diabatic cases. The model was based on the Euler–Euler formalism of the Navier–Stokes equations, in which governing equations are solved for both phases of the fluid at each time step. The conjugate heat transfer—between the tube wall and the fluid—was considered via a coupling with the SYRTHES 4.3 software, which solves solid conduction in three dimensions. A mesh convergence study was carried out, which found that a resolution of 40 meshes per diameter was necessary for our case. The approach was validated by comparison with an experimental study of the literature, based on the faithful reproduction of the positions of two-phase flow regime transitions in the domain. Original post-processing was used, to unravel the flow characteristics. The mean and RMS fields of void fraction, temperatures and stream wise velocities in several sections were analyzed, when statistical convergence was reached. A thermal equilibrium was reached in the saturated liquid, but not in the vapor phase, due to the flow dynamic and possibly the presence of droplets. Finally, a thermal analysis of the configuration was proposed. It demonstrated the strong coupling between the temperature distribution in the solid, and the two-phase flow regimes at stake in the fluid domain.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76564845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Methodology for Stochastic Simulation of Head Impact on Windshields 头部碰撞挡风玻璃的随机模拟方法
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-03 DOI: 10.3390/applmech4010010
C. Brokmann, C. Alter, S. Kolling
{"title":"A Methodology for Stochastic Simulation of Head Impact on Windshields","authors":"C. Brokmann, C. Alter, S. Kolling","doi":"10.3390/applmech4010010","DOIUrl":"https://doi.org/10.3390/applmech4010010","url":null,"abstract":"In accidents involving cars with pedestrians, the impact of the head on structural parts of the vehicle presents a significant risk of injury. If the head hits the windshield, the injury is highly influenced by glass fracture. In pedestrian protection tests, a head form impactor is shot on the windshield while the resultant acceleration at the centre of gravity of the head is measured. To assess the risk of fatal or serious injury, a head injury criterion (HIC) as an explicit function of the measured acceleration can be determined. The braking strength of glass, which has a major impact on the head acceleration, however, is not deterministic but depends on production-related microcracks on the glass surface as well as on the loading rate. The aim of the present paper is to show a pragmatic method for how to include the stochastic failure of glass in crash and impact simulations. The methodology includes a fracture mechanical model for the strain rate-dependent failure of glass, an experimental determination of the glass strength for the different areas of a windshield (surface, edge, and screen-printing area), a statistical evaluation of the experimental data, and a computation of an HIC probability distribution by stochastic simulation.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":null,"pages":null},"PeriodicalIF":14.3,"publicationDate":"2023-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84688697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信