Applied Mechanics Reviews最新文献

筛选
英文 中文
Analysis and Design of Lateral Framing Systems for Multi-Story Steel Buildings 多层钢结构横向框架体系的分析与设计
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-03-27 DOI: 10.3390/applmech4020022
Husam Al Dughaishi, Jawad Al Lawati, M. Alosta, S. Mahmood, M. F. Al-Kazee, N. Yusoff, A. Milad
{"title":"Analysis and Design of Lateral Framing Systems for Multi-Story Steel Buildings","authors":"Husam Al Dughaishi, Jawad Al Lawati, M. Alosta, S. Mahmood, M. F. Al-Kazee, N. Yusoff, A. Milad","doi":"10.3390/applmech4020022","DOIUrl":"https://doi.org/10.3390/applmech4020022","url":null,"abstract":"This study focused on identifying the most appropriate structural system for multi-story buildings and analyzing its response to lateral loads. The study analyzed and compared the different structural systems to determine the most suitable option. The study aims to utilize three lateral framing systems (moment, braced, and diagrid) in order to investigate which system needs the least amount of steel to meet the design requirements. Thus, in order to determine the estimated steel savings of this system as compared to the moment and braced frames, the four-story and eight-story buildings that are 96′ × 96′ in the plane and utilize moment frames, braced frame, and diagrid framing structural systems are presented. Based on the American Society of Civil Engineers (ASCE) 7–10, load combinations are considered for the designs, and the RAM structural analysis is used for the modeling and analysis of the structural systems. The findings of this study’s illustrations were the optimum for the analysis of wind of 176 kips and seismic loads of 122 kips, the building’s lateral displacements, which were the lowest at 0.045 inches, the story drift, the story stiffness, and the story shear for each structural system. In addition, the diagrid system also had the least amount of shear for all the stories, suggesting that it is better able to manage the lateral forces. These results indicate that the diagrid system is a more efficient structural system and can be recommended for use in multi-story buildings.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"22 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75261699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Combining Digital Image Correlation and Acoustic Emission to Characterize the Flexural Behavior of Flax Biocomposites 结合数字图像相关和声发射表征亚麻生物复合材料的弯曲行为
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-03-21 DOI: 10.3390/applmech4010021
M. Habibi, L. Laperrière
{"title":"Combining Digital Image Correlation and Acoustic Emission to Characterize the Flexural Behavior of Flax Biocomposites","authors":"M. Habibi, L. Laperrière","doi":"10.3390/applmech4010021","DOIUrl":"https://doi.org/10.3390/applmech4010021","url":null,"abstract":"Understanding the effect of staking sequences and identifying the damage occurring within a structure using a structural health monitoring system are the keys to an efficient design of composite-based parts. In this research, a combination of digital image correlation (DIC) and acoustic emission (AE) is used to locate and classify the type of damage depending on the stacking sequence of the laminate during flexural loading. As a first step, the results of the strain fields for unidirectional, cross-ply, and quasi-isotropic laminates were compared to discuss their global behavior and to correlate the different damage patterns with the possible failure mechanisms. The damage was then addressed using a comprehensive interpretation of the acoustic emission signatures and the K-means classification of the acoustic events. The development of each damage mechanism was correlated to the applied load and expressed as a function of the loading rate to highlight the effect of the stacking sequence. Finally, the results of DIC and AE were combined to improve the reliability of the damage investigation without limiting the failure mechanism to matrix cracking, interfacial failure, and fiber breakage, as expected by the unsupervised event clustering.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"19 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2023-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81848244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Real-Time Detection of Faults in Rotating Blades Using Frequency Response Function Analysis 基于频响函数分析的旋转叶片故障实时检测
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-03-15 DOI: 10.3390/applmech4010020
Ravi Prakash Babu Kocharla, M. Kolli, Muralimohan Cheepu
{"title":"Real-Time Detection of Faults in Rotating Blades Using Frequency Response Function Analysis","authors":"Ravi Prakash Babu Kocharla, M. Kolli, Muralimohan Cheepu","doi":"10.3390/applmech4010020","DOIUrl":"https://doi.org/10.3390/applmech4010020","url":null,"abstract":"Turbo machines develop faults in the rotating blades during operation in undesirable conditions. Such faults in the rotating blades are fatigue cracks, mechanical looseness, imbalance, misalignment, etc. Therefore, it is crucial that the blade faults should be detected and diagnosed in order to minimize the severe damage of such machines. In this paper, vibration analysis of the rotating blades is conducted using an experimental laboratory setup in order to develop a methodology to detect faults in the rotating blades. The faults considered for the study include cracks and mechanical looseness for which dynamic responses are recorded using a laser vibrometer. Analysis has been carried out by comparing the frequency response function spectrums of the fault blade with those of the healthy blade related to the resonance frequency. The Internet of Things and wireless sensor networks are implemented to transmit the measured data to the cloud platform. A support vector machine algorithm is used for preparing the learning model in order to extract and classify the faults of the rotating blades. It can be clearly seen from the results that there is variation in the frequency response function spectrums of healthy and faulty conditions of the rotating blades.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"1 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2023-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90059586","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Data-Driven, Physics-Based, or Both: Fatigue Prediction of Structural Adhesive Joints by Artificial Intelligence 数据驱动,物理驱动,或两者兼而有之:基于人工智能的结构粘合接头疲劳预测
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-03-08 DOI: 10.3390/applmech4010019
P. Fernandes, G. C. Silva, D. Pitz, Matteo Schnelle, K. Koschek, C. Nagel, V. C. Beber
{"title":"Data-Driven, Physics-Based, or Both: Fatigue Prediction of Structural Adhesive Joints by Artificial Intelligence","authors":"P. Fernandes, G. C. Silva, D. Pitz, Matteo Schnelle, K. Koschek, C. Nagel, V. C. Beber","doi":"10.3390/applmech4010019","DOIUrl":"https://doi.org/10.3390/applmech4010019","url":null,"abstract":"Here, a comparative investigation of data-driven, physics-based, and hybrid models for the fatigue lifetime prediction of structural adhesive joints in terms of complexity of implementation, sensitivity to data size, and prediction accuracy is presented. Four data-driven models (DDM) are constructed using extremely randomized trees (ERT), eXtreme gradient boosting (XGB), LightGBM (LGBM) and histogram-based gradient boosting (HGB). The physics-based model (PBM) relies on the Findley’s critical plane approach. Two hybrid models (HM) were developed by combining data-driven and physics-based approaches obtained from invariant stresses (HM-I) and Findley’s stress (HM-F). A fatigue dataset of 979 data points of four structural adhesives is employed. To assess the sensitivity to data size, the dataset is split into three train/test ratios, namely 70%/30%, 50%/50%, and 30%/70%. Results revealed that DDMs are more accurate, but more sensitive to dataset size compared to the PBM. Among different regressors, the LGBM presented the best performance in terms of accuracy and generalization power. HMs increased the accuracy of predictions, whilst reducing the sensitivity to data size. The HM-I demonstrated that datasets from different sources can be utilized to improve predictions (especially with small datasets). Finally, the HM-I showed the highest accuracy with an improved sensitivity to data size.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"26 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90718397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Electro-Chemo-Mechanical Challenges and Perspective in Lithium Metal Batteries 锂金属电池的电化学-机械挑战与展望
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-03-03 DOI: 10.1115/1.4057039
K. Naik, B. Vishnugopi, Joy Datta, D. Datta, P. Mukherjee
{"title":"Electro-Chemo-Mechanical Challenges and Perspective in Lithium Metal Batteries","authors":"K. Naik, B. Vishnugopi, Joy Datta, D. Datta, P. Mukherjee","doi":"10.1115/1.4057039","DOIUrl":"https://doi.org/10.1115/1.4057039","url":null,"abstract":"\u0000 The development of next-generation batteries, utilizing electrodes with high capacities and power densities requires a comprehensive understanding and precise control of material interfaces and architectures. Electro-chemo-mechanics plays an integral role in the morphological evolution and stability of such complex interfaces. Volume changes in electrode materials and the chemical interaction of electrode/electrolyte interfaces result in non-uniform stress fields and structurally-different interphases, fundamentally affecting the underlying transport and reaction kinetics. The origin of this mechanistic coupling and its implications on degradation is uniquely dependent on the interface characteristics. In this review, the distinct nature of chemo-mechanical coupling and failure mechanisms at solid-liquid interfaces and solid-solid interfaces is analyzed. For lithium metal electrodes, the critical role of surface/microstructural heterogeneities on the solid electrolyte interphase (SEI) stability and dendrite growth in liquid electrolytes, and on the onset of contact loss and filament penetration with solid electrolytes (SEs) is summarized. With respect to composite electrodes, key differences in the microstructure-coupled electro-chemo-mechanical attributes of intercalation- and conversion-based chemistries are delineated. Moving from liquid to solid electrolytes in such cathodes, we highlight the significant impact of solid-solid point contacts on transport/mechanical response, electrochemical performance, and failure modes such as particle cracking and delamination. Lastly, we present our perspective on future research directions and opportunities to address the underlying electro-chemo-mechanical challenges for enabling next-generation lithium metal batteries.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"34 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2023-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78098803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Closed Form Solution in the Buckling Optimization Problem of Twisted Shafts 扭轴屈曲优化问题的封闭解
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-28 DOI: 10.3390/applmech4010018
V. Kobelev
{"title":"Closed Form Solution in the Buckling Optimization Problem of Twisted Shafts","authors":"V. Kobelev","doi":"10.3390/applmech4010018","DOIUrl":"https://doi.org/10.3390/applmech4010018","url":null,"abstract":"The counterpart for Euler’s buckling problem is Greenhill’s problem, which studies the forming of a loop in an elastic beam under torsion. In the context of twisted shafts, the optimal shape of the beam along its axis is searched. A priori form of the cross-section remains unknown. For the solution of the actual problem, the stability equations take into account all possible convex and simply connected shapes of the cross-section. The cross-sections are similar geometric figures related by a homothetic transformation with respect to a homothetic center on the axis of the beam and vary along its axis. The distribution of material along the length of a twisted shaft is optimized so that the beam is of the constant volume and will support the maximal moment without spatial buckling. The applications of the variational method for stability problems are illustrated in this manuscript.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"11 3 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78340387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Free-Form Deformation Parameterization on the Aerodynamic Optimization of Morphing Trailing Edge 变形后缘气动优化中的自由变形参数化
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-28 DOI: 10.3390/applmech4010017
M. Negahban, M. Bashir, R. Botez
{"title":"Free-Form Deformation Parameterization on the Aerodynamic Optimization of Morphing Trailing Edge","authors":"M. Negahban, M. Bashir, R. Botez","doi":"10.3390/applmech4010017","DOIUrl":"https://doi.org/10.3390/applmech4010017","url":null,"abstract":"Every aerodynamic optimization is proceeded by a parameterization of the studied aerial object, and due to its influence on the final optimization process, careful attention should be made in choosing the appropriate parameterization method. An aerodynamic optimization of a morphing trailing edge is performed using a free-form deformation parameterization technique with the purpose of examining the influence of the initial conditions of the parameterization on the optimization results, namely on the number of control points. High-fidelity gradient-based optimization using the discrete adjoint method is established by the coupling of OpenFOAM and Python within the DAFoam optimization framework. The results indicate that the number of control points has a considerable effect on the optimization process, in particular on the convergence, objective function value, and on the deformation feasibility.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"117 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2023-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79769506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Prediction of Effective Elastic and Thermal Properties of Heterogeneous Materials Using Convolutional Neural Networks 利用卷积神经网络预测非均质材料的有效弹性和热性能
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-27 DOI: 10.3390/applmech4010016
H. Béji, T. Kanit, T. Messager
{"title":"Prediction of Effective Elastic and Thermal Properties of Heterogeneous Materials Using Convolutional Neural Networks","authors":"H. Béji, T. Kanit, T. Messager","doi":"10.3390/applmech4010016","DOIUrl":"https://doi.org/10.3390/applmech4010016","url":null,"abstract":"The aim of this study is to develop a new method to predict the effective elastic and thermal behavior of heterogeneous materials using Convolutional Neural Networks CNN. This work consists first of all in building a large database containing microstructures of two phases of heterogeneous material with different shapes (circular, elliptical, square, rectangular), volume fractions of the inclusion (20%, 25%, 30%), and different contrasts between the two phases in term of Young modulus and also thermal conductivity. The contrast expresses the degree of heterogeneity in the heterogeneous material, when the value of C is quite important (C >> 1) or quite low (C << 1), it means that the material is extremely heterogeneous, while C= 1, the material becomes totally homogeneous. In the case of elastic properties, the contrast is expressed as the ratio between Young’s modulus of the inclusion and that of the matrix ( C = EiEm), while for thermal properties, this ratio is expressed as a function of the thermal conductivity of both phases (C = λiλm). In our work, the model will be tested on two values of contrast (10 and 100). These microstructures will be used to estimate the elastic and thermal behavior by calculating the effective bulk, shear, and thermal conductivity values using a finite element method. The collected databases will be trained and tested on a deep learning model composed of a first convolutional network capable of extracting features and a second fully connected network that allows, through these parameters, the adjustment of the error between the found output and the expected one. The model was verified using a Mean Absolute Percentage Error (MAPE) loss function. The prediction results were excellent, with a prediction score between 92% and 98%, which justifies the good choice of the model parameters.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"16 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84378269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Special Issue of Applied Mechanics Reviews in Collaboration with the Journal of Electrochemical Energy Conversion and Storage 与电化学能量转换与存储杂志合作出版的《应用力学评论》特刊
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-24 DOI: 10.1115/1.4056961
H. Dankowicz, W. Chiu
{"title":"Special Issue of Applied Mechanics Reviews in Collaboration with the Journal of Electrochemical Energy Conversion and Storage","authors":"H. Dankowicz, W. Chiu","doi":"10.1115/1.4056961","DOIUrl":"https://doi.org/10.1115/1.4056961","url":null,"abstract":"","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"68 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80047678","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stability of Heterogeneous Beams with Three Supports—Solutions Using Integral Equations 三支承非均质梁的稳定性——用积分方程求解
IF 14.3 1区 工程技术
Applied Mechanics Reviews Pub Date : 2023-02-22 DOI: 10.3390/applmech4010015
L. Kiss, A. Messaoudi, G. Szeidl
{"title":"Stability of Heterogeneous Beams with Three Supports—Solutions Using Integral Equations","authors":"L. Kiss, A. Messaoudi, G. Szeidl","doi":"10.3390/applmech4010015","DOIUrl":"https://doi.org/10.3390/applmech4010015","url":null,"abstract":"It is our main objective to find the critical load for three beams with cross sectional heterogeneity. Each beam has three supports, of which the intermediate one is a spring support. Determination of the critical load for these beams leads to three point boundary value problems (BVPs) associated with homogeneous boundary conditions—the mentioned BVPs constitute three eigenvalue problems. They are solved by using a novel solution strategy based on the Green functions that belong to these BVPs: the eigenvalue problems established for the critical load are transformed into eigenvalue problems governed by homogeneous Fredholm integral equations with kernels that can be given in closed forms provided that the Green function of each BVP is known. Then the eigenvalue problems governed by the Fredholm integral equations can be manipulated into algebraic eigenvalue problems solved numerically by using effective algorithms. It is an advantage of the way we attack these problems that the formalism established and the results obtained remain valid for homogeneous beams as well. The numerical results for the critical forces can be applied to solve some stability problems in the engineering practice.","PeriodicalId":8048,"journal":{"name":"Applied Mechanics Reviews","volume":"36 1","pages":""},"PeriodicalIF":14.3,"publicationDate":"2023-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75631066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信