Topics in Catalysis最新文献

筛选
英文 中文
Effect of TiO2 Crystal Facet on Pd/Anatase Catalysts for Formaldehyde Oxidation TiO2 晶面对 Pd/Anatase 甲醛氧化催化剂的影响
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-04-03 DOI: 10.1007/s11244-024-01943-7
{"title":"Effect of TiO2 Crystal Facet on Pd/Anatase Catalysts for Formaldehyde Oxidation","authors":"","doi":"10.1007/s11244-024-01943-7","DOIUrl":"https://doi.org/10.1007/s11244-024-01943-7","url":null,"abstract":"<h3>Abstract</h3> <p>Crystal facet engineering is an effective strategy for designing efficient catalysts to improve the ability to oxidize formaldehyde (HCHO). In this article, anatase TiO<sub>2</sub> samples with different main exposed crystal facets ((001), (010) and (101)) were prepared and utilized as supports to load Pd, leading to the synthesis of Pd/TiO<sub>2</sub> (001), Pd/TiO<sub>2</sub> (010) and Pd/TiO<sub>2</sub> (101) catalysts, respectively. For HCHO oxidation, Pd/TiO<sub>2</sub> (001) displayed the best activity, and could convert 100% HCHO at 35 °C. However, the removal rates for Pd/TiO<sub>2</sub> (010) and Pd/TiO<sub>2</sub> (101) catalysts were only 46% and 35% even at 55 °C. After carefully comparing the property differences of these three supports, it was found that more surface defects were formed on the (001) facet than on (010) and (101). With more surface defects of support, Pd/TiO<sub>2</sub> (001) catalyst possessed more oxygen vacancies, Pd metal sites and interface sites, which could effectively activate oxygen and water. This further improved the ability to oxidize HCHO. The findings from this study are anticipated to contribute valuable insights for the design of highly efficient supported noble metal catalysts.</p> <span> <h3>Graphical Abstract</h3> <p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/11244_2024_1943_Figa_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"36 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ Structure Study of a TiO2 Doped MnOX-Na2WO4/SiO2 Catalyst Under Na2WO4 Melting Conditions Na2WO4 熔融条件下掺杂 TiO2 的 MnOX-Na2WO4/SiO2 催化剂的原位结构研究
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-04-03 DOI: 10.1007/s11244-024-01946-4
{"title":"In Situ Structure Study of a TiO2 Doped MnOX-Na2WO4/SiO2 Catalyst Under Na2WO4 Melting Conditions","authors":"","doi":"10.1007/s11244-024-01946-4","DOIUrl":"https://doi.org/10.1007/s11244-024-01946-4","url":null,"abstract":"<h3>Abstract</h3> <p>MnO<sub>X</sub>-Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> catalyst exhibited notable C<sub>2</sub> selectivity/yield in the oxidative coupling of methane (OCM), a promised green chemistry reaction. Nevertheless, the reaction mechanism of this catalyst remains a subject of contention, particularly regarding the role of Na<sub>2</sub>WO<sub>4</sub> in the activation. In this study, in situ characterizations of a TiO<sub>2</sub>-modified MnO<sub>X</sub>-Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> catalyst are conducted by XRD and XPS correlating to the OCM reaction condition, focusing on the simultaneous phase transition of catalyst components within its activation temperature zone. The online MS along with XPS/XRD coupled activity study confirm that transition from Mn<sup>3+</sup> to Mn<sup>2+</sup> stands as a pivotal factor influencing the reactivity. In situ XRD further revealed that in this narrow temperature window there is a particular three-step Na<sub>2</sub>WO<sub>4</sub> phase change, ending as molten salt, right before the substantial Mn<sup>3+</sup> to Mn<sup>2+</sup> transfer initiated. In addition, the rarely observed Na<sub>2</sub>WO<sub>4</sub> behavior as molten salt is observed by in situ XPS with rapid spectra collected during an on-stage heating process. These comprehensive in situ catalyst characterizations, covering the extensive structure–activity relationship from solid state to partial molten salt condition, supply new important evidence of the active oxygen transfer pathway from Na<sub>2</sub>WO<sub>4</sub> to Mn species which provides a key to understand the activation mechanism of MnO<sub>X</sub>-Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> catalyst in OCM.</p> <span> <h3>Graphical Abstract</h3> <p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/11244_2024_1946_Figa_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"58 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifunctional Photocatalysis Toward Efficient NOx Removal Performance and Water Splitting Activity: A Case of TiO2/g-C3N4 实现高效氮氧化物去除性能和水分离活性的双功能光催化:以 TiO2/g-C3N4 为例
IF 2.8 3区 化学
Topics in Catalysis Pub Date : 2024-04-03 DOI: 10.1007/s11244-024-01937-5
Viet Van Pham, Thach Khac Bui, Trang Thu Thi Nguyen, Khang Nhat Nguyen, Hoang Thai Nguyen, Hai Viet Le
{"title":"Bifunctional Photocatalysis Toward Efficient NOx Removal Performance and Water Splitting Activity: A Case of TiO2/g-C3N4","authors":"Viet Van Pham,&nbsp;Thach Khac Bui,&nbsp;Trang Thu Thi Nguyen,&nbsp;Khang Nhat Nguyen,&nbsp;Hoang Thai Nguyen,&nbsp;Hai Viet Le","doi":"10.1007/s11244-024-01937-5","DOIUrl":"10.1007/s11244-024-01937-5","url":null,"abstract":"<div><p>Studies about emissions reduction and treatment, and renewable energy generation are sustainable development goals of the United Nations. Therein, photocatalysts have emerged as highly attractive multifunctional materials due to their versatile applications in environmental remediation and energy production. In this study, a bifunctional photocatalyst, TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>, was synthesized for the purpose of NO<sub>x</sub> removal and water splitting. Various weight ratios of commercially available TiO<sub>2</sub> were combined with g-C<sub>3</sub>N<sub>4</sub> synthesized through a pyrolysis method. The findings demonstrate that the 10%-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> composite exhibited a notably high NO removal rate of 48.34% and minimal NO<sub>2</sub> yield compared to pure g-C<sub>3</sub>N<sub>4</sub>. The incorporation of TiO<sub>2</sub> onto g-C<sub>3</sub>N<sub>4</sub> induced bandgap restructuring, resulting in a significant enhancement in photocurrent density, with a maximum increase of 25 μA cm<sup>−2</sup> at 1.23 V. Moreover, the combination of g-C<sub>3</sub>N<sub>4</sub> with 10% TiO<sub>2</sub> exhibited promising electrocatalytic potential for the oxygen evolution reaction, as indicated by an overpotential of 0.44 V. Overall, the utilization of bifunctional photocatalysis with TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> holds great promise as an effective approach for both NO<sub>x</sub> removal and water splitting applications. This combination offers potential solutions for addressing environmental challenges and advancing renewable energy technologies.</p></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"67 17-18","pages":"1055 - 1065"},"PeriodicalIF":2.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 Conversion via Low-Temperature RWGS Enabled by Multicomponent Catalysts: Could Transition Metals Outperform Pt? 通过多组分催化剂实现低温 RWGS 的二氧化碳转化:过渡金属能否超越铂?
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-04-02 DOI: 10.1007/s11244-024-01935-7
G. Torres-Sempere, J. González-Arias, A. Penkova, J. L. Santos-Muñoz, L. F. Bobadilla, J. A. Odriozola, L. Pastor-Pérez, T. R. Reina
{"title":"CO2 Conversion via Low-Temperature RWGS Enabled by Multicomponent Catalysts: Could Transition Metals Outperform Pt?","authors":"G. Torres-Sempere, J. González-Arias, A. Penkova, J. L. Santos-Muñoz, L. F. Bobadilla, J. A. Odriozola, L. Pastor-Pérez, T. R. Reina","doi":"10.1007/s11244-024-01935-7","DOIUrl":"https://doi.org/10.1007/s11244-024-01935-7","url":null,"abstract":"<p>In the context of CO<sub>2</sub> valorisation, the reverse water–gas shift reaction (RWGS) is gathering momentum since it represents a direct route for CO<sub>2</sub> reduction to CO. The endothermic nature of the reaction posses a challenge when it comes to process energy demand making necessary the design of effective low-temperature RWGS catalysts. Herein, multicomponent Cs-promoted Cu, Ni and Pt catalysts supported on TiO<sub>2</sub> have been studied in the low-temperature RWGS. Cs resulted an efficient promoter affecting the redox properties of the different catalysts and favouring a strong metal-support interaction effect thus modulating the catalytic behaviour of the different systems. Positive impact of Cs is shown over the different catalysts and overall, it greatly benefits CO selectivity. For instance, Cs incorporation over Ni/TiO<sub>2</sub> catalysts increased CO selectivity from 0 to almost 50%. Pt-based catalysts present the best activity/selectivity balance although CuCs/TiO<sub>2</sub> catalyst present comparable catalytic activity to Pt-studied systems reaching commendable activity and CO selectivity levels, being an economically appealing alternative for this process.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"59 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manufacturing of a Novel Sensor Based CuO@Graphene Catalyst for Voltammetric Detection of Prednisolone as an Important Doping Agent in Sport 制造用于伏安法检测体育运动中重要兴奋剂泼尼松龙的基于 CuO@Graphene 催化剂的新型传感器
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-04-01 DOI: 10.1007/s11244-024-01931-x
{"title":"Manufacturing of a Novel Sensor Based CuO@Graphene Catalyst for Voltammetric Detection of Prednisolone as an Important Doping Agent in Sport","authors":"","doi":"10.1007/s11244-024-01931-x","DOIUrl":"https://doi.org/10.1007/s11244-024-01931-x","url":null,"abstract":"<h3>Abstract</h3> <p>Selective and sensitive measurement of Prednisolone is vital for its routine analysis in pharmaceutical formulations and doping control in sports. In present research, an effective sensing platform for analysis of prednisolone in body fluids based on CuO@graphene nano-sized (Gr–CuO) catalyst was suggested. The electrochemical sensor was fabricated by deposition of the Gr–CuO on the GCE that provides a remarkably improved sensitivity for the square wave voltammetry detection of prednisolone drug. The uniform distribution of nano-sized CuO NPs led to superior electrocatalyst property, thereby maximizing the prednisolone determination abilities of the suggested sensor. The presented sensing strategy illustrates the acceptable linear response in the range of concentrations of 0.01–25 µM with a low detection limit of 0.008 µM owing to synergetic effect of Gr nanosheets and CuO NPs. The RSD value for prednisolone measurement using seven various GCEs was estimated as 3.4%. The anti-interference investigations confirmed that the different common biological interference such as glucose, dopamine, uric acid, ascorbic aide, xanthine and hypoxanthine did not affect the quantitative analysis of prednisolone. The validity of the Gr–CuO/GCE showed that the accurate detection of prednisolone in the body fluids of some athletes.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"60 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Doping of Niobium Oxide on the Catalytic Activity of Pt/Al2O3 for CO Oxidation 掺杂氧化铌对 Pt/Al2O3 氧化 CO 催化活性的影响
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-03-29 DOI: 10.1007/s11244-024-01924-w
Le Yu, Yejin Song, Seunghwa Hong, Zhaoyi Xu, Shourong Zheng, Jeong Young Park
{"title":"Influence of Doping of Niobium Oxide on the Catalytic Activity of Pt/Al2O3 for CO Oxidation","authors":"Le Yu, Yejin Song, Seunghwa Hong, Zhaoyi Xu, Shourong Zheng, Jeong Young Park","doi":"10.1007/s11244-024-01924-w","DOIUrl":"https://doi.org/10.1007/s11244-024-01924-w","url":null,"abstract":"<p>Pt-based alumina catalysts doped with varying niobium contents (i.e., 0, 1.20, 2.84, and 4.73 wt%, denoted as Pt/Nb–Al<sub>2</sub>O<sub>3</sub>) were synthesized via stepwise impregnation for catalytic CO oxidation. The effective incorporation of Nb species without altering the fundamental properties of the Al<sub>2</sub>O<sub>3</sub> support was confirmed by the characterization using XRD, Raman, and TEM. Pt metallic particles were uniformly deposited on the niobium-doped alumina (Nb–Al<sub>2</sub>O<sub>3</sub>) support. H<sub>2</sub>-TPR and CO–TPD analyses were performed to reveal the influence of niobium doping on catalyst reduction and CO adsorption properties. The results consistently demonstrate that the doping of niobium affects reducibility and alleviates the competitive adsorption between CO and O<sub>2</sub> during the CO reaction. Particularly, when compared to both undoped and excessively doped Pt/Al<sub>2</sub>O<sub>3</sub> catalysts, the catalyst featuring a 2.84 wt% Nb content on Pt<sub>1.4</sub>/Nb<sub>2.8</sub>–Al<sub>2</sub>O<sub>3</sub> displayed the most promising catalytic performance, with a turnover frequency of 3.12 s<sup>−1</sup> at 180 °C. This superior performance can be attributed to electron transfer at the Pt/NbOx interface.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"2 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrophobic Modification of Small-Pore Pd-SSZ-13 Zeolites for Catalytic Methane Combustion 疏水改性小孔 Pd-SSZ-13 沸石用于催化甲烷燃烧
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-03-29 DOI: 10.1007/s11244-024-01923-x
Xinyu Wang, Xin Xu, Wuwan Xiong, Daiqi Ye, Peirong Chen
{"title":"Hydrophobic Modification of Small-Pore Pd-SSZ-13 Zeolites for Catalytic Methane Combustion","authors":"Xinyu Wang, Xin Xu, Wuwan Xiong, Daiqi Ye, Peirong Chen","doi":"10.1007/s11244-024-01923-x","DOIUrl":"https://doi.org/10.1007/s11244-024-01923-x","url":null,"abstract":"<p>Catalytic oxidation is an effective solution for the control of methane (CH<sub>4</sub>) emission in exhausts from natural gas vehicles. Pd-based small-pore zeolites (such as Pd-SSZ-13) are considered to be the most active catalysts for CH<sub>4</sub> oxidation, but H<sub>2</sub>O in the exhausts tends to induce deactivation of Pd catalysts. In this work, we tuned the hydrophobicity of Pd-SSZ-13 as a representative to improve its H<sub>2</sub>O resistance in CH<sub>4</sub> oxidation. Pd-SSZ-13 catalysts with different Si/Al ratios were obtained by dealuminizing the pristine SSZ-13 zeolite with acid followed by Pd ion exchange, and a reduction of <i>T</i><sub><i>50</i></sub> (i.e. the temperature to reach 50% conversion of CH<sub>4</sub>) by 20 ℃ was achieved in CH<sub>4</sub> oxidation in the presence of 10 vol.% H<sub>2</sub>O. Detailed physicochemical characterizations showed that the fraction of highly dispersed PdO species (highly active in CH<sub>4</sub> oxidation) increased, whereas that of less inactive PdO<sub><i>x</i></sub> clusters decreased, in the Pd-SSZ-13 after acid modification. In addition, the increase of zeolite hydrophobicity after acid modification alleviated the H<sub>2</sub>O inhibition effect on the active PdO phase, leading to a less activity loss of Pd-SSZ-13 in CH<sub>4</sub> oxidation. The improved hydrophobicity also favored C<sub>3</sub>H<sub>8</sub> combustion over Pd-SSZ-13. These results suggested that simple acid modification could tune effectively the Si/Al ratio and hydrophobicity of zeolite supports, and eventually the physicochemical properties and oxidation performance of the supported Pd catalysts.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"31 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanomodified Geopolymers with Copper Ferrites for Methylene Blue Degradation 含铜铁氧体的纳米改性土工聚合物对亚甲蓝的降解作用
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-03-28 DOI: 10.1007/s11244-024-01922-y
Gabriel Bezerra Silva, Fabíola da Silveira Maranhão, Fernando Gomes de Souza, Daniele Silvéria Brandão, Thiago do Nascimento Peçanha, Ellen Brito Hsia, Antonieta Middea, Roberto Costa Lima
{"title":"Nanomodified Geopolymers with Copper Ferrites for Methylene Blue Degradation","authors":"Gabriel Bezerra Silva, Fabíola da Silveira Maranhão, Fernando Gomes de Souza, Daniele Silvéria Brandão, Thiago do Nascimento Peçanha, Ellen Brito Hsia, Antonieta Middea, Roberto Costa Lima","doi":"10.1007/s11244-024-01922-y","DOIUrl":"https://doi.org/10.1007/s11244-024-01922-y","url":null,"abstract":"<p>The photocatalytic properties of copper ferrites can be exploited in the degradation of organic contaminants in aqueous media, such as methylene blue. The interaction of ferrites with electromagnetic radiation results in the formation of chemical species capable of acting in the degradation of methylene blue molecules. The incorporation of these nanomaterials into geopolymeric matrices makes it possible to produce polymeric nanocomposites with improved properties. Geopolymers loaded with different percentages of copper ferrites were placed in contact with a solution of methylene blue, exposed to UV light and it was possible to observe photocatalytic activity in the degradation of this dye. Analysis in a UV–Vis spectrophotometer, at the maximum absorbance wavelength of the dye equivalent to 670 nm, showed that the geopolymer loaded with 2% copper ferrites was more effective in degrading methylene blue. These results display the potential of copper ferrite-loaded geopolymers as viable photocatalysts for organic pollutant remediation.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"05 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning the Interaction Between Ru Nanoparticles and Nd2O3 to Enhance Hydrogen Formation from Ammonia Decomposition 调节 Ru 纳米粒子与 Nd2O3 之间的相互作用以增强氨分解产生的氢气
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-03-28 DOI: 10.1007/s11244-024-01926-8
{"title":"Tuning the Interaction Between Ru Nanoparticles and Nd2O3 to Enhance Hydrogen Formation from Ammonia Decomposition","authors":"","doi":"10.1007/s11244-024-01926-8","DOIUrl":"https://doi.org/10.1007/s11244-024-01926-8","url":null,"abstract":"<h3>Abstract</h3> <p>Development of highly active and stable catalysts for production of CO<sub>x</sub>-free hydrogen from ammonia is crucial for the use of ammonia as hydrogen carrier. Herein, Ru nanoparticles (NPs) on Nd<sub>2</sub>O<sub>3</sub> (Ru/Nd<sub>2</sub>O<sub>3</sub>) was prepared by different methods and investigated for NH<sub>3</sub> decomposition reaction. The dependence of the catalytic activity of Ru NPs on the Nd<sub>2</sub>O<sub>3</sub> on the interaction between Ru NPs and Nd<sub>2</sub>O<sub>3</sub> support was investigated in detail. The Ru/Nd<sub>2</sub>O<sub>3</sub> obtained from precipitation method exhibits a high hydrogen formation rate of 1548 mmol g<sub>cat</sub><sup>−1</sup> h<sup>−1</sup> at 450 °C, which is high than that of the Ru/Nd<sub>2</sub>O<sub>3</sub> analogue from milling method and comparable with many efficient oxides supported Ru catalysts reported previously. As revealed by various characterization techniques, the high activity of Ru/Nd<sub>2</sub>O<sub>3</sub> obtained from precipitation method can be attributed to the enhanced interaction between Ru NPs and Nd<sub>2</sub>O<sub>3</sub>. The Ru NPs in Ru/Nd<sub>2</sub>O<sub>3</sub> analogue with enhanced the metal-support interaction can modulate electronic structure and facilitate the activation and decomposition of NH<sub>3</sub>. Therefore, Ru/Nd<sub>2</sub>O<sub>3</sub> obtained from precipitation method exhibited significantly improved activity and intrinsic activity for NH<sub>3</sub> decomposition. This study provides promise for the design of efficient Ru/Nd<sub>2</sub>O<sub>3</sub> catalyst for NH<sub>3</sub> decomposition reaction by tuning the metal–support interaction of catalysts.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"44 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biodiesel Synthesis Using Magnetizable Geopolymer as Heterogeneous Catalysts Nanocomposite Assisted by Artificial Intelligence 在人工智能辅助下使用可磁化的土工聚合物作为异相催化剂纳米复合材料合成生物柴油
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-03-25 DOI: 10.1007/s11244-024-01929-5
Daniele Silvéria Brandão, Fernando Gomes de Souza, Fabíola da Silveira Maranhão, Kaushik Pal, Michelle Colão de Paula Pereira, Andreina Catarina Torres, Gabriel Bezerra Silva, Thiago do Nascimento Peçanha, Sophia Elizabeth Cesar e Silva, Jean Carlos Carelo, Antonieta Middea
{"title":"Biodiesel Synthesis Using Magnetizable Geopolymer as Heterogeneous Catalysts Nanocomposite Assisted by Artificial Intelligence","authors":"Daniele Silvéria Brandão, Fernando Gomes de Souza, Fabíola da Silveira Maranhão, Kaushik Pal, Michelle Colão de Paula Pereira, Andreina Catarina Torres, Gabriel Bezerra Silva, Thiago do Nascimento Peçanha, Sophia Elizabeth Cesar e Silva, Jean Carlos Carelo, Antonieta Middea","doi":"10.1007/s11244-024-01929-5","DOIUrl":"https://doi.org/10.1007/s11244-024-01929-5","url":null,"abstract":"<p>Biodiesel stands out as a promising contender in the quest for renewable energy solutions, offering a greener alternative to traditional fossil fuels. Derived primarily from the transesterification of vegetable oils or animal fats, biodiesel offers an eco-friendly energy avenue with a minimized carbon footprint. Catalysts are central to the success of this process, which significantly enhance yield rates. Geopolymers, traditionally associated with construction applications due to their inorganic nature, have been derived from aluminosilicate sources activated using alkaline solutions. However, recent advancements spotlight geopolymers in a new light, emphasizing their prospective role as nanocatalytic agents for biodiesel synthesis. This paradigm shift suggests improved production efficiency and an innovative method of repurposing industrial waste. This study centers on the pioneering application of geopolymers, fortified with magnetite, as potent heterogeneous catalysts for biodiesel generation from soybean and safflower oils. By leveraging a meticulously crafted geopolymer matrix—consisting of metakaolin, sodium hydroxide, and magnetite—this research replaced traditional catalysts with this advanced nanostructured geopolymer variant in the biodiesel methylation process. The research delved deep to ascertain the prime synthesis conditions. Furthermore, utilizing cutting-edge machine learning methodologies provided an analytical lens to navigate the extensive experimental data, thereby fine-tuning the optimization trajectory. One of the salient takeaways from this research is the validation that geopolymer catalysts, rooted in kaolinite, can be ingeniously tailored to ensure elevated biodiesel yields across a spectrum of oil sources, underscoring their unparalleled efficiency and versatility in the biofuel domain.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"17 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140298200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信