Topics in Catalysis最新文献

筛选
英文 中文
Box–Behnken Design to Optimize Herbicide Decomposition Using an Eco-Friendly Photocatalyst Based on Carbon Dots from Coffee Waste Combined with ZnBi2O4 and Its Antibacterial Application 利用基于咖啡废料碳点和 ZnBi2O4 的环保型光催化剂优化除草剂分解的箱式贝肯设计及其抗菌应用
IF 2.8 3区 化学
Topics in Catalysis Pub Date : 2024-04-09 DOI: 10.1007/s11244-024-01934-8
Nguyen Thi Thanh Huong, Dang Nguyen Nha Khanh, Ngo Thi Tuong Vy, Le Hai Khoa, Nguyen Ngoc Nghia, Nguyen Thi Kim Phuong
{"title":"Box–Behnken Design to Optimize Herbicide Decomposition Using an Eco-Friendly Photocatalyst Based on Carbon Dots from Coffee Waste Combined with ZnBi2O4 and Its Antibacterial Application","authors":"Nguyen Thi Thanh Huong,&nbsp;Dang Nguyen Nha Khanh,&nbsp;Ngo Thi Tuong Vy,&nbsp;Le Hai Khoa,&nbsp;Nguyen Ngoc Nghia,&nbsp;Nguyen Thi Kim Phuong","doi":"10.1007/s11244-024-01934-8","DOIUrl":"10.1007/s11244-024-01934-8","url":null,"abstract":"<div><p>A Box–Behnken design (BBD) for a response surface methodology with five factors and three levels was applied to design 2,4-D degradation experiments under visible light. To optimize the experimental conditions, the five factors included the amount of Cdots in a Cdots (x%)-ZnBi<sub>2</sub>O<sub>4</sub> catalyst (x = 0–2%), the decomposition time (90–120 min), the initial 2,4-D concentration (30–40 mg/L), the catalyst dosage (0.5–1.5 mg/L), and the pH (2–7), and these were selected as independent variables. The BBD method proposed a second-order polynomial equation that fitted the experimental data perfectly. The results of the analysis of variance (ANOVA) confirmed the appropriateness of the proposed model, resulting in the relationship between the predicted and adjusted values having an R<sup>2</sup> value of 0.9980. The optimal conditions for the photodecomposition of 2,4-D were found to be an initial 2,4-D concentration of 30 mg/L, a degradation time of 120 min, a Cdots(2%)-ZnBi<sub>2</sub>O<sub>4</sub> dosage of 1.0 mg/L, and a pH of 4.0. Under these conditions, the highest 2,4-D photodecomposition of 91.1% was obtained, which was in reasonable agreement with the predicted value of 91.67%. After 6 consecutive reaction cycles, the photodecomposition efficiency still exceeded 81%. The results confirmed that the Cdots(2%)-ZnBi<sub>2</sub>O<sub>4</sub> photocatalyst has excellent reusability. Moreover, the lowest concentration of Cdots(2%)-ZnBi<sub>2</sub>O<sub>4</sub> that inhibited the growth of <i>E. coli</i> (ATCC 8793) and <i>S. aureus</i> (ATCC 6538) was 150 µg/mL, with an inhibition zone of 18–19 nm for <i>E coli</i> and about 15 mm for <i>S. aureus.</i></p></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"67 17-18","pages":"1226 - 1240"},"PeriodicalIF":2.8,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140721560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Critical View on the Quantification of Model Catalyst Activity 对模型催化剂活性量化的批判性观点
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-04-04 DOI: 10.1007/s11244-024-01920-0
Johanna Reich, Sebastian Kaiser, Ueli Heiz, Jan-Dierk Grunwaldt, Manfred M. Kappes, Friedrich Esch, Barbara A. J. Lechner
{"title":"A Critical View on the Quantification of Model Catalyst Activity","authors":"Johanna Reich, Sebastian Kaiser, Ueli Heiz, Jan-Dierk Grunwaldt, Manfred M. Kappes, Friedrich Esch, Barbara A. J. Lechner","doi":"10.1007/s11244-024-01920-0","DOIUrl":"https://doi.org/10.1007/s11244-024-01920-0","url":null,"abstract":"<p>The conversion of reactants, reaction rate referred to catalyst mass, and turnover frequency (TOF) are values typically employed to compare the activity of different catalysts. However, experimental parameters have to be chosen carefully when systems of different complexity are compared. In order to characterize UHV-based model systems, we use a highly sensitive sniffer setup which allows us to investigate the catalytic activity by combining three different measurement modes: temperature-programmed desorption, continuous flow, and pulsed-reactivity experiments. In this article, we explore the caveats of quantifying catalytic activity in UHV on the well-studied and highly defined reference system of CO oxidation on Pt(111), which we later compare to the same reaction on Pt<sub>19</sub> clusters deposited on Fe<sub>3</sub>O<sub>4</sub>(001). We demonstrate that we can apply fast heating ramps for TOF quantification, thus inducing as little sintering as possible in the metastable clusters. By changing the reactant ratio, we find transient reactivity effects that influence the TOF, which should be kept in mind when comparing catalysts. In addition, the TOF also depends on the surface coverage that itself is a function of temperature and pressure. At a constant reactant ratio, in the absence of transient effects, however, the TOF scales linearly with total pressure over the entire measured temperature range from 200 to 700 K since the reaction rate is dependent on both reactant partial pressures with temperature-dependent reaction order. When comparing the maximum TOF at this particular reactant ratio, we find a 1.6 times higher maximum TOF for Pt<sub>19</sub>/Fe<sub>3</sub>O<sub>4</sub>(001) than for Pt(111). In addition, pulsed-reactivity measurements help identify purely reaction-limited regimes and allow for a more detailed investigation of limiting reactants over the whole temperature range.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"121 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Silica-Based Materials in Methane Conversion: A Two-Decade Bibliometric and Literature Review (1995–2022) 甲烷转化中的硅基材料:二十年文献计量和文献综述(1995-2022 年)
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-04-04 DOI: 10.1007/s11244-024-01932-w
Mansur Alhassan, Aishah Abdul Jalil, Armstrong Ighodalo Omoregie, Mahadi Bin Bahari, Thuan Van Tran, Abiodun Abdulhameed Amusa
{"title":"Silica-Based Materials in Methane Conversion: A Two-Decade Bibliometric and Literature Review (1995–2022)","authors":"Mansur Alhassan, Aishah Abdul Jalil, Armstrong Ighodalo Omoregie, Mahadi Bin Bahari, Thuan Van Tran, Abiodun Abdulhameed Amusa","doi":"10.1007/s11244-024-01932-w","DOIUrl":"https://doi.org/10.1007/s11244-024-01932-w","url":null,"abstract":"<p>The potential of silica (SiO<sub>2</sub>)-based materials in environmental remediation and energy production, particularly in the conversion of methane (CH<sub>4</sub>) with carbon dioxide (CO<sub>2</sub>) to fuels (synthesis gas, mixture of carbon monoxide and hydrogen) via dry reforming of methane (DRM), cannot be overemphasized. In this study, the significance of fibrous SiO<sub>2</sub> in minimizing waste and optimizing resource utilization through the exploration of CO<sub>2</sub> applications, its environmental consequences, the assessment of commercialization prospects, and the role of silica-based materials in environmental remediation are comprehensively presented. Analysis of research documents spanning from 1995 to 2022 is presented with an examination of 3122 Keywords Plus (ID) and 1211 Author's Keywords from these publications, which revealed trending themes, major funding institutions, prolific countries, notable authors, and leading journals. The findings underscore China’s dominance as the most productive country in terms of publications and citations (101, 2127), closely trailed by Iran (55, 688), India (47, 675), the USA (39, 864), Japan (26, 342), France (21, 425), Germany (18, 816), Spain (17, 309), South Korea (16, 239), and Malaysia (12, 282). The investigation inveils that implementing renewable energy-powered direct air capture demands a comprehensive strategy, addressing the potential negative impacts of SiO<sub>2</sub> nanoparticles and their interaction with biological components and environmental elements. This study elucidates the potential applications and commercialization prospects for fibrous SiO<sub>2</sub> materials, especially their incorporation into carbon capture and utilization technologies, thereby expanding the range of carbon–neutral solutions.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"100 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sonophotocatalytic Degradation of Reactive Black 5 in Simulated Dye Wastewater Using ZnO and Activated Red Mud Sonophotocatalyst 利用氧化锌和活性红泥声光催化剂降解模拟染料废水中的活性黑 5
IF 2.8 3区 化学
Topics in Catalysis Pub Date : 2024-04-04 DOI: 10.1007/s11244-024-01945-5
Vigneswar Krishnan, Collin G. Joseph, Yun Hin Taufiq-Yap, Siow Hwa Teo, Sabrina Soloi, Newati Wid, Mohd Hafiz Abd Majid, Yan Yan Farm, Kenneth F. Rodrigues
{"title":"Sonophotocatalytic Degradation of Reactive Black 5 in Simulated Dye Wastewater Using ZnO and Activated Red Mud Sonophotocatalyst","authors":"Vigneswar Krishnan,&nbsp;Collin G. Joseph,&nbsp;Yun Hin Taufiq-Yap,&nbsp;Siow Hwa Teo,&nbsp;Sabrina Soloi,&nbsp;Newati Wid,&nbsp;Mohd Hafiz Abd Majid,&nbsp;Yan Yan Farm,&nbsp;Kenneth F. Rodrigues","doi":"10.1007/s11244-024-01945-5","DOIUrl":"10.1007/s11244-024-01945-5","url":null,"abstract":"<div><p>In this study, an anionic dye, Reactive Black 5 (RB5), was subjected to sonophotocatalytic treatment process with the aim of establishing the effectiveness of the prepared ZnO incorporated activated red mud (ZnO/ARM) as a viable sonophotocatalyst. ZnO/ARM was prepared by impregnation method at different weight ratios (0.25:1, 0.5:1, 0.75:1 and 1:1) with the ZnO/ARM at weight ratio of 0.75:1 proving to be the best sonophotocatalyst. The prepared sonophotocatalysts were characterized by X-ray diffractometer for crystal phase studies, Brunauer–Emmett–Teller for surface area studies, Fourier transform infrared for surface functional groups studies, SEM–EDX for surface morphological and elemental studies, diffuse reflectance spectroscopy and photoluminescence for sonophotocatalyst band-gap studies while parametric and kinetic studies of the removal of RB5 from the simulated wastewater were conducted to confirm its effectiveness under simultaneous application of a transducer bath-type sonicator (35 kHz) and a UV-C (254 nm) lamp. The influence of the solution pH, concentration and catalyst dosage were manipulated throughout this study to investigate the sonophotodegradation kinetics and synergistic effects on the RB5 degradation. Experimental results confirmed that the sonophotocatalytic degradation rate of 20 ppm RB5 was most effective under acidic medium (66.7%) as compared to alkaline medium (46.1%) due to an excess of positive charge in the ZnO/ARM surface which favours a strong electrostatic interaction with SO<sub>3</sub><sup>−</sup> groups of the dye resulting in a higher degradation rate (0.0156 min<sup>−1</sup>). Under alkaline conditions, the catalytic activity of ZnO/ARM was attenuated by the higher negative charge which promoted the repulsion of the dye from ZnO/ARM surfaces leading to a lower degradation rate of 0.01 min<sup>−1</sup>. The accelerated photo induced electron–hole transfer and separation, decreased recombination rate and band energy matching, enhancing the photocatalytic performance of ZnO/ARM composite.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"67 17-18","pages":"1194 - 1210"},"PeriodicalIF":2.8,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of TiO2 Crystal Facet on Pd/Anatase Catalysts for Formaldehyde Oxidation TiO2 晶面对 Pd/Anatase 甲醛氧化催化剂的影响
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-04-03 DOI: 10.1007/s11244-024-01943-7
{"title":"Effect of TiO2 Crystal Facet on Pd/Anatase Catalysts for Formaldehyde Oxidation","authors":"","doi":"10.1007/s11244-024-01943-7","DOIUrl":"https://doi.org/10.1007/s11244-024-01943-7","url":null,"abstract":"<h3>Abstract</h3> <p>Crystal facet engineering is an effective strategy for designing efficient catalysts to improve the ability to oxidize formaldehyde (HCHO). In this article, anatase TiO<sub>2</sub> samples with different main exposed crystal facets ((001), (010) and (101)) were prepared and utilized as supports to load Pd, leading to the synthesis of Pd/TiO<sub>2</sub> (001), Pd/TiO<sub>2</sub> (010) and Pd/TiO<sub>2</sub> (101) catalysts, respectively. For HCHO oxidation, Pd/TiO<sub>2</sub> (001) displayed the best activity, and could convert 100% HCHO at 35 °C. However, the removal rates for Pd/TiO<sub>2</sub> (010) and Pd/TiO<sub>2</sub> (101) catalysts were only 46% and 35% even at 55 °C. After carefully comparing the property differences of these three supports, it was found that more surface defects were formed on the (001) facet than on (010) and (101). With more surface defects of support, Pd/TiO<sub>2</sub> (001) catalyst possessed more oxygen vacancies, Pd metal sites and interface sites, which could effectively activate oxygen and water. This further improved the ability to oxidize HCHO. The findings from this study are anticipated to contribute valuable insights for the design of highly efficient supported noble metal catalysts.</p> <span> <h3>Graphical Abstract</h3> <p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/11244_2024_1943_Figa_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"36 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In Situ Structure Study of a TiO2 Doped MnOX-Na2WO4/SiO2 Catalyst Under Na2WO4 Melting Conditions Na2WO4 熔融条件下掺杂 TiO2 的 MnOX-Na2WO4/SiO2 催化剂的原位结构研究
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-04-03 DOI: 10.1007/s11244-024-01946-4
{"title":"In Situ Structure Study of a TiO2 Doped MnOX-Na2WO4/SiO2 Catalyst Under Na2WO4 Melting Conditions","authors":"","doi":"10.1007/s11244-024-01946-4","DOIUrl":"https://doi.org/10.1007/s11244-024-01946-4","url":null,"abstract":"<h3>Abstract</h3> <p>MnO<sub>X</sub>-Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> catalyst exhibited notable C<sub>2</sub> selectivity/yield in the oxidative coupling of methane (OCM), a promised green chemistry reaction. Nevertheless, the reaction mechanism of this catalyst remains a subject of contention, particularly regarding the role of Na<sub>2</sub>WO<sub>4</sub> in the activation. In this study, in situ characterizations of a TiO<sub>2</sub>-modified MnO<sub>X</sub>-Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> catalyst are conducted by XRD and XPS correlating to the OCM reaction condition, focusing on the simultaneous phase transition of catalyst components within its activation temperature zone. The online MS along with XPS/XRD coupled activity study confirm that transition from Mn<sup>3+</sup> to Mn<sup>2+</sup> stands as a pivotal factor influencing the reactivity. In situ XRD further revealed that in this narrow temperature window there is a particular three-step Na<sub>2</sub>WO<sub>4</sub> phase change, ending as molten salt, right before the substantial Mn<sup>3+</sup> to Mn<sup>2+</sup> transfer initiated. In addition, the rarely observed Na<sub>2</sub>WO<sub>4</sub> behavior as molten salt is observed by in situ XPS with rapid spectra collected during an on-stage heating process. These comprehensive in situ catalyst characterizations, covering the extensive structure–activity relationship from solid state to partial molten salt condition, supply new important evidence of the active oxygen transfer pathway from Na<sub>2</sub>WO<sub>4</sub> to Mn species which provides a key to understand the activation mechanism of MnO<sub>X</sub>-Na<sub>2</sub>WO<sub>4</sub>/SiO<sub>2</sub> catalyst in OCM.</p> <span> <h3>Graphical Abstract</h3> <p> <span> <span> <img alt=\"\" src=\"https://static-content.springer.com/image/MediaObjects/11244_2024_1946_Figa_HTML.png\"/> </span> </span></p> </span>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"58 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifunctional Photocatalysis Toward Efficient NOx Removal Performance and Water Splitting Activity: A Case of TiO2/g-C3N4 实现高效氮氧化物去除性能和水分离活性的双功能光催化:以 TiO2/g-C3N4 为例
IF 2.8 3区 化学
Topics in Catalysis Pub Date : 2024-04-03 DOI: 10.1007/s11244-024-01937-5
Viet Van Pham, Thach Khac Bui, Trang Thu Thi Nguyen, Khang Nhat Nguyen, Hoang Thai Nguyen, Hai Viet Le
{"title":"Bifunctional Photocatalysis Toward Efficient NOx Removal Performance and Water Splitting Activity: A Case of TiO2/g-C3N4","authors":"Viet Van Pham,&nbsp;Thach Khac Bui,&nbsp;Trang Thu Thi Nguyen,&nbsp;Khang Nhat Nguyen,&nbsp;Hoang Thai Nguyen,&nbsp;Hai Viet Le","doi":"10.1007/s11244-024-01937-5","DOIUrl":"10.1007/s11244-024-01937-5","url":null,"abstract":"<div><p>Studies about emissions reduction and treatment, and renewable energy generation are sustainable development goals of the United Nations. Therein, photocatalysts have emerged as highly attractive multifunctional materials due to their versatile applications in environmental remediation and energy production. In this study, a bifunctional photocatalyst, TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub>, was synthesized for the purpose of NO<sub>x</sub> removal and water splitting. Various weight ratios of commercially available TiO<sub>2</sub> were combined with g-C<sub>3</sub>N<sub>4</sub> synthesized through a pyrolysis method. The findings demonstrate that the 10%-TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> composite exhibited a notably high NO removal rate of 48.34% and minimal NO<sub>2</sub> yield compared to pure g-C<sub>3</sub>N<sub>4</sub>. The incorporation of TiO<sub>2</sub> onto g-C<sub>3</sub>N<sub>4</sub> induced bandgap restructuring, resulting in a significant enhancement in photocurrent density, with a maximum increase of 25 μA cm<sup>−2</sup> at 1.23 V. Moreover, the combination of g-C<sub>3</sub>N<sub>4</sub> with 10% TiO<sub>2</sub> exhibited promising electrocatalytic potential for the oxygen evolution reaction, as indicated by an overpotential of 0.44 V. Overall, the utilization of bifunctional photocatalysis with TiO<sub>2</sub>/g-C<sub>3</sub>N<sub>4</sub> holds great promise as an effective approach for both NO<sub>x</sub> removal and water splitting applications. This combination offers potential solutions for addressing environmental challenges and advancing renewable energy technologies.</p></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"67 17-18","pages":"1055 - 1065"},"PeriodicalIF":2.8,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CO2 Conversion via Low-Temperature RWGS Enabled by Multicomponent Catalysts: Could Transition Metals Outperform Pt? 通过多组分催化剂实现低温 RWGS 的二氧化碳转化:过渡金属能否超越铂?
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-04-02 DOI: 10.1007/s11244-024-01935-7
G. Torres-Sempere, J. González-Arias, A. Penkova, J. L. Santos-Muñoz, L. F. Bobadilla, J. A. Odriozola, L. Pastor-Pérez, T. R. Reina
{"title":"CO2 Conversion via Low-Temperature RWGS Enabled by Multicomponent Catalysts: Could Transition Metals Outperform Pt?","authors":"G. Torres-Sempere, J. González-Arias, A. Penkova, J. L. Santos-Muñoz, L. F. Bobadilla, J. A. Odriozola, L. Pastor-Pérez, T. R. Reina","doi":"10.1007/s11244-024-01935-7","DOIUrl":"https://doi.org/10.1007/s11244-024-01935-7","url":null,"abstract":"<p>In the context of CO<sub>2</sub> valorisation, the reverse water–gas shift reaction (RWGS) is gathering momentum since it represents a direct route for CO<sub>2</sub> reduction to CO. The endothermic nature of the reaction posses a challenge when it comes to process energy demand making necessary the design of effective low-temperature RWGS catalysts. Herein, multicomponent Cs-promoted Cu, Ni and Pt catalysts supported on TiO<sub>2</sub> have been studied in the low-temperature RWGS. Cs resulted an efficient promoter affecting the redox properties of the different catalysts and favouring a strong metal-support interaction effect thus modulating the catalytic behaviour of the different systems. Positive impact of Cs is shown over the different catalysts and overall, it greatly benefits CO selectivity. For instance, Cs incorporation over Ni/TiO<sub>2</sub> catalysts increased CO selectivity from 0 to almost 50%. Pt-based catalysts present the best activity/selectivity balance although CuCs/TiO<sub>2</sub> catalyst present comparable catalytic activity to Pt-studied systems reaching commendable activity and CO selectivity levels, being an economically appealing alternative for this process.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"59 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manufacturing of a Novel Sensor Based CuO@Graphene Catalyst for Voltammetric Detection of Prednisolone as an Important Doping Agent in Sport 制造用于伏安法检测体育运动中重要兴奋剂泼尼松龙的基于 CuO@Graphene 催化剂的新型传感器
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-04-01 DOI: 10.1007/s11244-024-01931-x
{"title":"Manufacturing of a Novel Sensor Based CuO@Graphene Catalyst for Voltammetric Detection of Prednisolone as an Important Doping Agent in Sport","authors":"","doi":"10.1007/s11244-024-01931-x","DOIUrl":"https://doi.org/10.1007/s11244-024-01931-x","url":null,"abstract":"<h3>Abstract</h3> <p>Selective and sensitive measurement of Prednisolone is vital for its routine analysis in pharmaceutical formulations and doping control in sports. In present research, an effective sensing platform for analysis of prednisolone in body fluids based on CuO@graphene nano-sized (Gr–CuO) catalyst was suggested. The electrochemical sensor was fabricated by deposition of the Gr–CuO on the GCE that provides a remarkably improved sensitivity for the square wave voltammetry detection of prednisolone drug. The uniform distribution of nano-sized CuO NPs led to superior electrocatalyst property, thereby maximizing the prednisolone determination abilities of the suggested sensor. The presented sensing strategy illustrates the acceptable linear response in the range of concentrations of 0.01–25 µM with a low detection limit of 0.008 µM owing to synergetic effect of Gr nanosheets and CuO NPs. The RSD value for prednisolone measurement using seven various GCEs was estimated as 3.4%. The anti-interference investigations confirmed that the different common biological interference such as glucose, dopamine, uric acid, ascorbic aide, xanthine and hypoxanthine did not affect the quantitative analysis of prednisolone. The validity of the Gr–CuO/GCE showed that the accurate detection of prednisolone in the body fluids of some athletes.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"60 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140593714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of Doping of Niobium Oxide on the Catalytic Activity of Pt/Al2O3 for CO Oxidation 掺杂氧化铌对 Pt/Al2O3 氧化 CO 催化活性的影响
IF 3.6 3区 化学
Topics in Catalysis Pub Date : 2024-03-29 DOI: 10.1007/s11244-024-01924-w
Le Yu, Yejin Song, Seunghwa Hong, Zhaoyi Xu, Shourong Zheng, Jeong Young Park
{"title":"Influence of Doping of Niobium Oxide on the Catalytic Activity of Pt/Al2O3 for CO Oxidation","authors":"Le Yu, Yejin Song, Seunghwa Hong, Zhaoyi Xu, Shourong Zheng, Jeong Young Park","doi":"10.1007/s11244-024-01924-w","DOIUrl":"https://doi.org/10.1007/s11244-024-01924-w","url":null,"abstract":"<p>Pt-based alumina catalysts doped with varying niobium contents (i.e., 0, 1.20, 2.84, and 4.73 wt%, denoted as Pt/Nb–Al<sub>2</sub>O<sub>3</sub>) were synthesized via stepwise impregnation for catalytic CO oxidation. The effective incorporation of Nb species without altering the fundamental properties of the Al<sub>2</sub>O<sub>3</sub> support was confirmed by the characterization using XRD, Raman, and TEM. Pt metallic particles were uniformly deposited on the niobium-doped alumina (Nb–Al<sub>2</sub>O<sub>3</sub>) support. H<sub>2</sub>-TPR and CO–TPD analyses were performed to reveal the influence of niobium doping on catalyst reduction and CO adsorption properties. The results consistently demonstrate that the doping of niobium affects reducibility and alleviates the competitive adsorption between CO and O<sub>2</sub> during the CO reaction. Particularly, when compared to both undoped and excessively doped Pt/Al<sub>2</sub>O<sub>3</sub> catalysts, the catalyst featuring a 2.84 wt% Nb content on Pt<sub>1.4</sub>/Nb<sub>2.8</sub>–Al<sub>2</sub>O<sub>3</sub> displayed the most promising catalytic performance, with a turnover frequency of 3.12 s<sup>−1</sup> at 180 °C. This superior performance can be attributed to electron transfer at the Pt/NbOx interface.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"2 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信