Meng Xu, Qiping Tian, Yuankang Quan, Liya Xu, Melika Namadchian
{"title":"Preparation of a New and Effective Heterogeneous Catalyst for Treatment of Organic Pollutant Using Fenton Process","authors":"Meng Xu, Qiping Tian, Yuankang Quan, Liya Xu, Melika Namadchian","doi":"10.1007/s11244-024-01959-z","DOIUrl":"https://doi.org/10.1007/s11244-024-01959-z","url":null,"abstract":"<p>In the present study, the fabrication and application of a magnetically separable catalyst for degradation of rhodamine B (RhB) dye using Fenton process were explored using an efficient octahedral Fe<sub>3</sub>O<sub>4</sub>-graphene oxide (OFe-GO) nanocomposite. By employing a simple ultrasonic process, the OFe-GO catalyst was successfully prepared through the immobilization of OFe onto the GO support. Various characterization methods were used to fully explore the crystalline character, morphological surface, chemical state and magnetic property of the prepared catalyst substances. In the presence of hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) as a green oxidant, the catalytic performance of RhB degradation using the proposed magnetic catalyst was explored. The experimental factors affected on the Fenton performance such as solution pH, catalyst concentration and H<sub>2</sub>O<sub>2</sub> concentration were evaluated and optimized. Using the established protocol, 50 mg mL<sup>−1</sup> of RhB can be completely at 15 min reaction time. Additionally, the used OFe-GO catalyst can be regenerated without losing the degradation performance for at least five cycles. Because of notable catalytic efficiency, fast degradation, and operational stability, the OFe-GO can be considered as an effective and separable catalyst for decolorization of dye-containing wastewater.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"22 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Development Trends in Selective Hydrogenation Upgrading of 5-Hydroxymethylfurfural Catalyzed by Heterogeneous Metal Catalysts","authors":"Shulin Liu, Guowei Zhou, Huizhen Liu, Buxing Han","doi":"10.1007/s11244-024-01951-7","DOIUrl":"https://doi.org/10.1007/s11244-024-01951-7","url":null,"abstract":"<p>5-Hydroxymethylfurfural (HMF) is a crucial platform molecule derived from biomass, with the potential for conversion into a wide array of products, intermediates, or monomers through various transformations including hydrogenation, oxidation, reductive amination, etherification, and decarbonylation due to its diverse functional groups (hydroxy, aldehyde, furan ring). Particularly, diverse products can be derived from the hydrogenation of C=O, C=C, and C–OH, posing a significant challenge in developing active and highly selective catalysts. This minireview addresses recent developments in heterogeneous catalysts and their application to HMF hydrogenation. Emphasis is placed on hydrogenation pathways and the construction of catalytic systems. The aim is to provide researchers with a comprehensive understanding of hydrogenation, hydrogenolysis, and dehydrogenation reactions applicable to biomass conversion. Additionally, current challenges and future opportunities are outlined to guide further studies towards more efficient and scalable processes.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"81 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fabrication of Nanostructured Cu-Au Materials as an Efficient Electrocatalyst for Lactate Determination in Athletes Biological Fluid During Exercise","authors":"Changwen Lu, Yanwen Lu, Manqiang Xu, Zitong Zhang, Wei Han, Masoud Ghanei","doi":"10.1007/s11244-024-01958-0","DOIUrl":"https://doi.org/10.1007/s11244-024-01958-0","url":null,"abstract":"<p>The exact determination of lactate concentration is very important in the fields of food quality and clinical diagnosis. A non-enzymatic amperometric sensor based on nanostructured porous Cu-Au electrocatalyst martial was designed and employed for lactate determination. For this purpose, the bimetallic surface was successfully coated on the glassy carbon electrode (GCE) using co-electrodeposition of copper and gold ions. The Cu-Au alloy proved to be an effective interface for the direct electrochemical oxidation of lactate. The Cu-Au modified GCE exhibits excellent lactate sensing capabilities thanks to the excellent conductivity of gold element in bimetallic material and high surface area of the porous Cu-Au alloy. In phosphate buffer solution, this novel electrochemical lactate sensor demonstrates a linear response to lactate within the concentration range of 20 to 2000 µM. The detection limit (based on S/N = 3) of the assay was estimated to be 5 µM. The established electrochemical sensing protocol is a highly selective device for the analysis of lactate in biological fluids. The lactate level in saliva samples was successfully quantified before and after exercise of athletes using the recommended strategy. The present non-enzymatic sensor offers a convenient, fast, cost-effective, and effective protocol for lactate measuring in clinical diagnosis applications.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\u0000","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"22 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140938503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ponnuswamy Vijayaraghavan, Veeramani Veeramanikandan, Bhathini Vaikuntavasan Pradeep, Chinnathambi Pothiraj, Khaloud Mohammed Alarjani, Dunia A. Al Farraj, Van-Huy Nguyen, Paulraj Balaji
{"title":"Enhanced Aerobic Naphthalene Degradation Utilizing Indigenous Microbial Flora as a Biocatalyst in Oil-Contaminated Wastewater","authors":"Ponnuswamy Vijayaraghavan, Veeramani Veeramanikandan, Bhathini Vaikuntavasan Pradeep, Chinnathambi Pothiraj, Khaloud Mohammed Alarjani, Dunia A. Al Farraj, Van-Huy Nguyen, Paulraj Balaji","doi":"10.1007/s11244-024-01953-5","DOIUrl":"10.1007/s11244-024-01953-5","url":null,"abstract":"<div><p>Bacteria indigenous to oil-contaminated water exhibited diverse metabolic capabilities in degrading various aromatic and monoaromatic hydrocarbons. Out of the 28 bacterial strains isolated from the wastewater, each was cultivated with at least one hydrocarbon, including kerosene, naphthalene, toluene, diesel, or aniline. Among these strains, <i>Pseudomonas putida</i> AD-128 emerged as one of the most effective polyaromatic hydrocarbon (PAH) degraders. Following a 6-day treatment period, strain <i>P. putida</i> AD-128 demonstrated proficiency in degrading various PAHs, including naphthalene, phenanthrene, and fluorine. After 6 days of incubation at 20 °C, the degradation of Naphthalene (NAP) notably increased. Gas Chromatography Mass Spectrometry analysis identified the degraded compounds, including pyruvic acid, salicylaldehyde, D-gluconic acid, and catechol. Optimal NAP degradation was observed at 20 °C and pH 6.0, with increased agitation speed correlating with enhanced bacterial growth and heightened degradation, particularly evident after 6 days at 20 °C. Peptone emerged as the most effective among the four nitrogen supplements (ammonium sulfate, potassium nitrate, beef extract, and peptone), significantly reducing residual naphthalene in the medium. The isolated indigenous bacterium, <i>P. putida</i> AD-128, exhibits robust capabilities in degrading PAHs under optimized conditions, making it a valuable asset for environmental management initiatives.</p></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"67 17-18","pages":"1183 - 1193"},"PeriodicalIF":2.8,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Biocatalytic Conversion of Lignocellulosic Water Hyacinth Biomass by Phanerochaete chrysosporium for Sustainable Ethanol Production","authors":"Ramasamy Muthukrishnan Gobinath, Chinnathambi Pothiraj, Ramasubramanian Arumugam, Periyasamy Periyakaruppiah, Daoud Ali, Saud Alarifi, Veeramani Veeramanikandan, Bhathini Vaikuntavasan Pradeep, Van-Huy Nguyen, Paulraj Balaji","doi":"10.1007/s11244-024-01952-6","DOIUrl":"10.1007/s11244-024-01952-6","url":null,"abstract":"<div><p>Water hyacinth (<i>Eichhornia crassipes</i>) as a aquatic weed has become a source of concern for value addition. This study aimed to determine the feasibility of the weedy biomass in sustainable bioethanol production using <i>Phanerochaete chrysosporium</i> and <i>Saccharomyces cerevisiae</i>. The results indicated that <i>P. chrysosporium</i> significantly utilized 70.9% of cellulose and 70% of hemicellulose from raw lignocellulose of water hyacinth with significant microbial enzyme production of 1.26 IU/ml. Moreover, the microbial treatment resulted in a significant amount of soluble protein (194.30 mg/g) and reducing sugar (34.20 g/l). XRD, SEM and FTIR analyses revealed that the crystalinity of cellulose was increased with the microbial treatment and hence, the yield of sugar also. Under submerged fermentation, <i>Saccharomyces cerevisiae</i> produced a maximum of 20.17 g/l of ethanol. The promising results of the present study explored the microbial treatment with <i>P. chrysosporium</i> and fermentation with <i>S. cerevisiae</i> as a successful and sustainable method for ethanol production from lignocellulosic weedy biomass.</p></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"67 17-18","pages":"1066 - 1076"},"PeriodicalIF":2.8,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140838643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Investigation of Co–Mn–Ce Ternary Composite Oxide Catalyst for Low-Temperature Selective Catalytic Reduction of NOx with NH3","authors":"Shuwen Zhang, Jiajia Ding, Yali Shen, Aiyong Wang, Li Wang, Yun Guo, Yanglong Guo, Wangcheng Zhan","doi":"10.1007/s11244-024-01925-9","DOIUrl":"https://doi.org/10.1007/s11244-024-01925-9","url":null,"abstract":"<p>In this paper, the Co<i>x</i>Mn1Ce<i>y</i> composite oxide catalyst was synthesized by the co-precipitation method. The structure–activity relationship of the catalyst was analyzed by characterization methods such as XRD, Raman, H<sub>2</sub>-TPR, NH<sub>3</sub>/NO<sub>x</sub>-TPD, XPS, and in situ DRIFTS. The results showed that the Co3Mn1Ce1 catalyst resisted high space velocity, water, and sulfur. In addition, Ce doping could effectively increase the specific surface area of the catalyst. In a sulfur-containing atmosphere, Ce could preferentially react with SO<sub>2</sub> and act as a sacrifice site to protect the active components from toxicity. Co-doping greatly enhanced the redox capacity of the catalyst and increased the chemisorbed oxygen (O<sub>S</sub>) content on the surface of catalysts. Co-presence of Co and Ce increased the content of surface-active Mn species, which further effectively improved the adsorption capacity of the catalyst for NH<sub>3</sub> and NO reactants. In situ DRIFTS results showed that the reaction on the Co3Mn1Ce1 catalyst followed both the Langmuir–Hinshelwood and Eley–Rideal mechanisms.</p>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"46 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881615","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Progress in Design Strategies for Photocatalytic Hydrogen Peroxide Generation","authors":"Hong Huy Tran, Thi Minh Cao, Viet Van Pham","doi":"10.1007/s11244-024-01936-6","DOIUrl":"10.1007/s11244-024-01936-6","url":null,"abstract":"<div><p>Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) emerges as an environmentally sustainable oxidant with great potential in diverse fields. However, the efficiency of H<sub>2</sub>O<sub>2</sub> generation via photocatalysis remains suboptimal. Fundamentally, this inefficiency stems from the rapid recombination of photogenerated electron–hole pairs, limited surface or interface activity, restricted solar light absorption, and poor selectivity. Here, we discuss the fundamental mechanisms of photocatalytic H<sub>2</sub>O<sub>2</sub> generation over the key material systems and highlight the most effective design strategies to address the unmet challenges faced by these systems. This review not only discusses fundamental insights into the mechanisms of photocatalytic H<sub>2</sub>O<sub>2</sub> generation but also provides perspectives on future directions for the development of photocatalytic materials with high-efficiency and stability in generating H<sub>2</sub>O<sub>2</sub>.</p></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"67 17-18","pages":"1085 - 1100"},"PeriodicalIF":2.8,"publicationDate":"2024-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liu Qirui, Muhammad Faisal, Sarmad Ali, Nisar Ali, Li Nian, Adnan Khan, Sumeet Malik, Muhammad Farhan, Nauman Ali, Umme Kalsoom
{"title":"Ternary Metal Oxide–Chitosan Hybrids for Efficient Photocatalytic Remediation of Organic Pollutants from Wastewater","authors":"Liu Qirui, Muhammad Faisal, Sarmad Ali, Nisar Ali, Li Nian, Adnan Khan, Sumeet Malik, Muhammad Farhan, Nauman Ali, Umme Kalsoom","doi":"10.1007/s11244-024-01942-8","DOIUrl":"10.1007/s11244-024-01942-8","url":null,"abstract":"<div><p>Insufficient infrastructure for wastewater treatment stands as a critical global concern, profoundly impacting both the environment and public health. This issue is exacerbated by industrial effluents containing hazardous organic pollutants and dyes such as crystal violet (CV) and methyl orange (MO), posing significant environmental threats. This study introduces a novel approach utilizing chitosan microsphere-based iron–strontium–zinc oxide photocatalysts aimed at addressing the decontamination of these organic dyes. The synthesis of iron–strontium–zinc oxide was performed via co-precipitation method followed by its characterization using various techniques. The resulting CS-Fe<sub>2</sub>SrZnO<sub>4</sub> microspheres exhibited a sleek morphology with an average diameter of 917 μm, featuring the confirmed presence of iron, strontium, and zinc oxide as ascertained by EDX analysis. With a bandgap of 1.24 eV, this material showcased remarkable efficacy in degrading CV and MO dyes under solar light irradiation. Optimized conditions were identified to attain maximum degradation efficiency for both dyes. The findings reveal that the maximum degradation achieved for MO and CV was 94% and 98%, respectively, at the optimized conditions (time; 60 min, catalyst dosage; 0.1 g, concentration 20 ppm, pH; 6 for MO and 8 for CV). The statistical analysis was also performed which supported the obtained results. The kinetics study showed that the degradation followed pseudo-first order kinetics with R<sup>2</sup> value of 0.96. The current study has a great environmental impact as the degradation of hazardous dyes reduces the health related risks. To our best knowledge, this is the first report on the combination of ternary metal oxides combined with chitosan for the degradation of hazardous dyes.</p></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"68 9-10","pages":"984 - 999"},"PeriodicalIF":2.8,"publicationDate":"2024-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Shahzeb Khan, Muhammad Ibrar Asif, Muhammad Asif, Muhammad Rizwan Khan, Ghulam Mustafa, Muhammad Adeel
{"title":"Nanomaterials for the Catalytic Degradation and Detection of Microplastics: A Review","authors":"Muhammad Shahzeb Khan, Muhammad Ibrar Asif, Muhammad Asif, Muhammad Rizwan Khan, Ghulam Mustafa, Muhammad Adeel","doi":"10.1007/s11244-024-01927-7","DOIUrl":"10.1007/s11244-024-01927-7","url":null,"abstract":"<div><p>Microplastics are commonly synthesized through deliberate manufacturing processes or arise from inadequate handling or processing of vast synthetic polymer materials, such as plastic packaging. The occurrence of microplastic pollution has been extensively reported worldwide, encompassing aquatic environments, atmospheric realms, and even within the anatomical structures of humans that is why microplastics removal has a lot of significance for cleaner environment. This review examines the significant role of nanomaterials in catalysing the degradation of microplastics, addressing the pressing need for efficient remediation methods. This study emphasizes the benefits of nanomaterials in the degradation of different types of microplastics and examines the mechanisms of oxidative, photocatalytic, and enzymatic degradation, highlighting their applicability in laboratory research and real-world scenarios. Our review also discusses the environmental consequences, safety considerations, and future prospects of nanomaterials, including emerging types and challenges related to scalability. In conclusion, a comprehensive analysis of the mechanisms and insights related to the problem was given, which can be valuable in improving the efficiency of catalytic processes for the removal of these microplastics.</p></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"68 9-10","pages":"796 - 813"},"PeriodicalIF":2.8,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140680449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Muhammad Jahangeer, Muti Ur Rehman, Rubina Nelofer, Muhammad Nadeem, Bushra Munir, Wojciech Smułek, Teofil Jesionowski, Sarmad Ahmad Qamar
{"title":"Biotransformation of Lignocellulosic Biomass to Value-Added Bioproducts: Insights into Bio-Saccharification Strategies and Potential Concerns","authors":"Muhammad Jahangeer, Muti Ur Rehman, Rubina Nelofer, Muhammad Nadeem, Bushra Munir, Wojciech Smułek, Teofil Jesionowski, Sarmad Ahmad Qamar","doi":"10.1007/s11244-024-01941-9","DOIUrl":"10.1007/s11244-024-01941-9","url":null,"abstract":"<div><p>Lignocellulose is considered to be the most abundant and sustainable material on earth. The concept of lignocellulosic biomass conversion into value-added chemicals or materials is gaining in importance worldwide as a means of replacing conventional petrochemical resources for environmental sustainability. The production of biofuels such as bioethanol from lignocellulosic biomass consists of three main processes: pretreatment, enzymatic saccharification, and fermentation. As lignocellulose exhibits a highly recalcitrant structure, effective pretreatments are required for its deconstruction, making carbohydrates accessible for microbes to produce valuable bioproducts. These carbohydrate polymers (cellulose and hemicellulose) are then transformed into free monomeric sugars by the process of saccharification. Saccharification, especially enzymatic hydrolysis, is the crucial step for achieving lignocellulose bioconversion. Several strategies have been developed for diminishing biomass recalcitrance, ultimately improving the efficiency of product conversion, and reducing overall process costs. Some of these approaches include consolidated bioprocessing, consolidated bio-saccharification (on site), as well as simultaneous saccharification and fermentation, and separate hydrolysis and fermentation (off site). This review provides a detailed overview of current approaches to on-site and off-site saccharification and highlights the key factors for obtaining bioproducts from lignocellulosic feedstock via economically feasible bioconversion processes. Moreover, the key factors for process optimization and the production of various industrially important bioproducts from lignocellulosic biomasses are also summarized.</p></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"68 9-10","pages":"929 - 950"},"PeriodicalIF":2.8,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11244-024-01941-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140688147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}