Nguyen Thi Thanh Huong, Dang Nguyen Nha Khanh, Ngo Thi Tuong Vy, Le Hai Khoa, Nguyen Ngoc Nghia, Nguyen Thi Kim Phuong
{"title":"利用基于咖啡废料碳点和 ZnBi2O4 的环保型光催化剂优化除草剂分解的箱式贝肯设计及其抗菌应用","authors":"Nguyen Thi Thanh Huong, Dang Nguyen Nha Khanh, Ngo Thi Tuong Vy, Le Hai Khoa, Nguyen Ngoc Nghia, Nguyen Thi Kim Phuong","doi":"10.1007/s11244-024-01934-8","DOIUrl":null,"url":null,"abstract":"<div><p>A Box–Behnken design (BBD) for a response surface methodology with five factors and three levels was applied to design 2,4-D degradation experiments under visible light. To optimize the experimental conditions, the five factors included the amount of Cdots in a Cdots (x%)-ZnBi<sub>2</sub>O<sub>4</sub> catalyst (x = 0–2%), the decomposition time (90–120 min), the initial 2,4-D concentration (30–40 mg/L), the catalyst dosage (0.5–1.5 mg/L), and the pH (2–7), and these were selected as independent variables. The BBD method proposed a second-order polynomial equation that fitted the experimental data perfectly. The results of the analysis of variance (ANOVA) confirmed the appropriateness of the proposed model, resulting in the relationship between the predicted and adjusted values having an R<sup>2</sup> value of 0.9980. The optimal conditions for the photodecomposition of 2,4-D were found to be an initial 2,4-D concentration of 30 mg/L, a degradation time of 120 min, a Cdots(2%)-ZnBi<sub>2</sub>O<sub>4</sub> dosage of 1.0 mg/L, and a pH of 4.0. Under these conditions, the highest 2,4-D photodecomposition of 91.1% was obtained, which was in reasonable agreement with the predicted value of 91.67%. After 6 consecutive reaction cycles, the photodecomposition efficiency still exceeded 81%. The results confirmed that the Cdots(2%)-ZnBi<sub>2</sub>O<sub>4</sub> photocatalyst has excellent reusability. Moreover, the lowest concentration of Cdots(2%)-ZnBi<sub>2</sub>O<sub>4</sub> that inhibited the growth of <i>E. coli</i> (ATCC 8793) and <i>S. aureus</i> (ATCC 6538) was 150 µg/mL, with an inhibition zone of 18–19 nm for <i>E coli</i> and about 15 mm for <i>S. aureus.</i></p></div>","PeriodicalId":801,"journal":{"name":"Topics in Catalysis","volume":"67 17-18","pages":"1226 - 1240"},"PeriodicalIF":2.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Box–Behnken Design to Optimize Herbicide Decomposition Using an Eco-Friendly Photocatalyst Based on Carbon Dots from Coffee Waste Combined with ZnBi2O4 and Its Antibacterial Application\",\"authors\":\"Nguyen Thi Thanh Huong, Dang Nguyen Nha Khanh, Ngo Thi Tuong Vy, Le Hai Khoa, Nguyen Ngoc Nghia, Nguyen Thi Kim Phuong\",\"doi\":\"10.1007/s11244-024-01934-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A Box–Behnken design (BBD) for a response surface methodology with five factors and three levels was applied to design 2,4-D degradation experiments under visible light. To optimize the experimental conditions, the five factors included the amount of Cdots in a Cdots (x%)-ZnBi<sub>2</sub>O<sub>4</sub> catalyst (x = 0–2%), the decomposition time (90–120 min), the initial 2,4-D concentration (30–40 mg/L), the catalyst dosage (0.5–1.5 mg/L), and the pH (2–7), and these were selected as independent variables. The BBD method proposed a second-order polynomial equation that fitted the experimental data perfectly. The results of the analysis of variance (ANOVA) confirmed the appropriateness of the proposed model, resulting in the relationship between the predicted and adjusted values having an R<sup>2</sup> value of 0.9980. The optimal conditions for the photodecomposition of 2,4-D were found to be an initial 2,4-D concentration of 30 mg/L, a degradation time of 120 min, a Cdots(2%)-ZnBi<sub>2</sub>O<sub>4</sub> dosage of 1.0 mg/L, and a pH of 4.0. Under these conditions, the highest 2,4-D photodecomposition of 91.1% was obtained, which was in reasonable agreement with the predicted value of 91.67%. After 6 consecutive reaction cycles, the photodecomposition efficiency still exceeded 81%. The results confirmed that the Cdots(2%)-ZnBi<sub>2</sub>O<sub>4</sub> photocatalyst has excellent reusability. Moreover, the lowest concentration of Cdots(2%)-ZnBi<sub>2</sub>O<sub>4</sub> that inhibited the growth of <i>E. coli</i> (ATCC 8793) and <i>S. aureus</i> (ATCC 6538) was 150 µg/mL, with an inhibition zone of 18–19 nm for <i>E coli</i> and about 15 mm for <i>S. aureus.</i></p></div>\",\"PeriodicalId\":801,\"journal\":{\"name\":\"Topics in Catalysis\",\"volume\":\"67 17-18\",\"pages\":\"1226 - 1240\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-04-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Topics in Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11244-024-01934-8\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Topics in Catalysis","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11244-024-01934-8","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
Box–Behnken Design to Optimize Herbicide Decomposition Using an Eco-Friendly Photocatalyst Based on Carbon Dots from Coffee Waste Combined with ZnBi2O4 and Its Antibacterial Application
A Box–Behnken design (BBD) for a response surface methodology with five factors and three levels was applied to design 2,4-D degradation experiments under visible light. To optimize the experimental conditions, the five factors included the amount of Cdots in a Cdots (x%)-ZnBi2O4 catalyst (x = 0–2%), the decomposition time (90–120 min), the initial 2,4-D concentration (30–40 mg/L), the catalyst dosage (0.5–1.5 mg/L), and the pH (2–7), and these were selected as independent variables. The BBD method proposed a second-order polynomial equation that fitted the experimental data perfectly. The results of the analysis of variance (ANOVA) confirmed the appropriateness of the proposed model, resulting in the relationship between the predicted and adjusted values having an R2 value of 0.9980. The optimal conditions for the photodecomposition of 2,4-D were found to be an initial 2,4-D concentration of 30 mg/L, a degradation time of 120 min, a Cdots(2%)-ZnBi2O4 dosage of 1.0 mg/L, and a pH of 4.0. Under these conditions, the highest 2,4-D photodecomposition of 91.1% was obtained, which was in reasonable agreement with the predicted value of 91.67%. After 6 consecutive reaction cycles, the photodecomposition efficiency still exceeded 81%. The results confirmed that the Cdots(2%)-ZnBi2O4 photocatalyst has excellent reusability. Moreover, the lowest concentration of Cdots(2%)-ZnBi2O4 that inhibited the growth of E. coli (ATCC 8793) and S. aureus (ATCC 6538) was 150 µg/mL, with an inhibition zone of 18–19 nm for E coli and about 15 mm for S. aureus.
期刊介绍:
Topics in Catalysis publishes topical collections in all fields of catalysis which are composed only of invited articles from leading authors. The journal documents today’s emerging and critical trends in all branches of catalysis. Each themed issue is organized by renowned Guest Editors in collaboration with the Editors-in-Chief. Proposals for new topics are welcome and should be submitted directly to the Editors-in-Chief.
The publication of individual uninvited original research articles can be sent to our sister journal Catalysis Letters. This journal aims for rapid publication of high-impact original research articles in all fields of both applied and theoretical catalysis, including heterogeneous, homogeneous and biocatalysis.