{"title":"Taxonomic diversity and functional potential of microbial communities in oyster calcifying fluid.","authors":"Andrea Unzueta-Martínez, Peter R Girguis","doi":"10.1128/aem.01094-24","DOIUrl":"https://doi.org/10.1128/aem.01094-24","url":null,"abstract":"<p><p>Creating and maintaining an appropriate chemical environment is essential for biomineralization, the process by which organisms precipitate minerals to form their shells or skeletons, yet the mechanisms involved in maintaining calcifying fluid chemistry are not fully defined. In particular, the role of microorganisms in facilitating or hindering animal biomineralization is poorly understood. Here, we investigated the taxonomic diversity and functional potential of microbial communities inhabiting oyster calcifying fluid. We used shotgun metagenomics to survey calcifying fluid microbial communities from three different oyster harvesting sites. There was a striking consistency in taxonomic composition across the three collection sites. We also observed archaea and viruses that had not been previously identified in oyster calcifying fluid. Furthermore, we identified microbial energy-conserving metabolisms that could influence the host's calcification, including genes involved in sulfate reduction and denitrification that are thought to play pivotal roles in inorganic carbon chemistry and calcification in microbial biofilms. These findings provide new insights into the taxonomy and functional capacity of oyster calcifying fluid microbiomes, highlighting their potential contributions to shell biomineralization, and contribute to a deeper understanding of the interplay between microbial ecology and biogeochemistry that could potentially bolster oyster calcification.</p><p><strong>Importance: </strong>Previous research has underscored the influence of microbial metabolisms in carbonate deposition throughout the geological record. Despite the ecological importance of microbes to animals and inorganic carbon transformations, there have been limited studies characterizing the potential role of microbiomes in calcification by animals such as bivalves. Here, we use metagenomics to investigate the taxonomic diversity and functional potential of microbial communities in calcifying fluids from oysters collected at three different locations. We show a diverse microbial community that includes bacteria, archaea, and viruses, and we discuss their functional potential to influence calcifying fluid chemistry via reactions like sulfate reduction and denitrification. We also report the presence of carbonic anhydrase and urease, both of which are critical in microbial biofilm calcification. Our findings have broader implications in understanding what regulates calcifying fluid chemistry and consequentially the resilience of calcifying organisms to 21st century acidifying oceans.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0109424"},"PeriodicalIF":3.9,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Temperature-responsive regulation of the polycyclic aromatic hydrocarbon-degrading mesophilic bacterium <i>Novosphingobium pentaromativorans</i> US6-1 with a temperature adaptation system.","authors":"Zhuangzhuang Liu, Xinran Liu, Haiyan Huang, Feifei Cao, Qiu Meng, Tingheng Zhu, Jianhua Yin, Xiaofei Song, Zhiliang Yu","doi":"10.1128/aem.01484-24","DOIUrl":"https://doi.org/10.1128/aem.01484-24","url":null,"abstract":"<p><p>Survivability and tolerance of polycyclic aromatic hydrocarbon (PAH)-degrading bacteria in harsh environments, especially under varying temperatures, are a bottleneck for the effective application of <i>in situ</i> bioremediation. In this study, a temperature adaptation system (TAS) was constructed by combining a customized thermotolerant system with a customized cold-resistant system to realize the temperature-responsive regulation of the PAH-degrading mesophilic bacterium <i>Novosphingobium pentaromativoran</i>s US6-1. The innovative dual-pronged TAS strategy enabled the chassis strain to effectively tackle conditions under varying temperatures, ensuring robust biological activities across a broadened temperature spectrum and exhibiting the potential to realize the high-efficiency PAH degradation of <i>N. pentaromativorans</i> US6-1 in <i>in situ</i> bioremediation. Furthermore, the temperature-responsive regulation achieved using the TAS circuit is likely promising for creating intelligent microbial cell factories and avoiding precise temperature maintenance, making it highly useful for industrial applications.IMPORTANCEEnvironmental temperature is among the extremely important factors that determine the bioactivities of pollutant-degrading microorganisms in <i>in situ</i> bioremediation. Effectively maintaining the survivability and tolerance of mesophilic microorganisms under harsh conditions and varying temperatures remains a challenge in the application of pollutant bioremediation. This study, for the first time, developed a temperature adaptation system by combining a customized thermotolerant system with a customized cold-resistant system to realize the temperature-responsive regulation of the polycyclic aromatic hydrocarbon (PAH)-degrading mesophilic bacterium <i>Novosphingobium pentaromativoran</i>s US6-1, thus diminishing the need for precise temperature control in PAH bioremediation.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0148424"},"PeriodicalIF":3.9,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Assembly and engineering of BioBricks to develop an efficient NADH regeneration system.","authors":"Feng Cheng, Cheng-Jiao Wang, Xiao-Xiao Gong, Ke-Xiang Sun, Xi-Hang Liang, Ya-Ping Xue, Yu-Guo Zheng","doi":"10.1128/aem.01041-24","DOIUrl":"https://doi.org/10.1128/aem.01041-24","url":null,"abstract":"<p><p>The cofactor regeneration system plays a crucial role in redox biocatalysis for organic synthesis and the pharmaceutical industry. The alcohol dehydrogenase (ADH)-based regeneration system offers a promising solution for the <i>in situ</i> regeneration of NAD(P)H. However, its widespread use is hindered by low activity and poor expression of ADH in <i>Escherichia coli</i>. Herein, the BioBricks (promoter, ribosome binding site [RBS], functional gene, and terminator) were assembled and engineered to constitute an efficient NADH regeneration system. The semi-rational design was employed to enhance the catalytic efficiency of <i>Gst</i>ADH (an ADH from <i>Geobacillus stearothermophilus</i>), resulting in a beneficial <i>Gst</i>ADH variant with a 2.1-fold increase in catalytic efficiency. Furthermore, the RBS optimization was used to increase the expression of ADH genes, leading to the identification of an RBS with a 3.2-fold increased translation rate. Using this developed system, the NADH generating velocity reached more than 2 s<sup>-1</sup> even toward 0.1 mM NAD<sup>+</sup>, indicating that it is the most promising NADH regeneration so far. Finally, the engineered system was utilized for the asymmetric biosynthesis of l-phosphinothricin (a chiral herbicide), with a high yield (>95%).</p><p><strong>Importance: </strong>The alcohol dehydrogenase (ADH)-based coenzyme regeneration system serves as a useful tool in redox biocatalysis. This system effectively replenishes NAD(P)H by utilizing isopropanol as a substrate, with the added advantage of easily separable acetone as a by-product. Previous studies focused on discovering new <i>adh</i> genes and engineering the ADH protein for higher catalytic efficiency, neglecting the optimization of other gene components. In this study, a remarkably efficient NADH regeneration system was developed using BioBricks assembly for system initialization. The ADH engineering was used to enhance catalytic efficiency, and RBS optimization for elevated ADH expression, which resulted in not only a 2.1-fold increase in catalytic efficiency but also a 3.2-fold increase in translation rate. Together, these improvements resulted in an overall 6.7-fold enhancement in performance. This system finds application in a wide range of NADH-dependent biocatalysis processes and is particularly advantageous for the biosynthesis of fine chemicals.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0104124"},"PeriodicalIF":3.9,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142806079","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Huiting Zhang, Wanyan Wang, Loren Honnas, Mark Mazzola, Tracey Somera
{"title":"Evaluating the stability of nursery-established arbuscular mycorrhizal fungal associations in apple rootstocks.","authors":"Huiting Zhang, Wanyan Wang, Loren Honnas, Mark Mazzola, Tracey Somera","doi":"10.1128/aem.01937-24","DOIUrl":"https://doi.org/10.1128/aem.01937-24","url":null,"abstract":"<p><p>Arbuscular mycorrhizal fungi (AMF) are promoted as commercial bioinoculants for sustainable agriculture. Little is known, however, about the survival of AMF inoculants in soil and their impacts on native or pre-established AMF communities in root tissue. The current study was designed to assess the stability of pre-existing/nursery-derived AMF in apple rootstocks after being planted into soil containing a known community of AMF with a limited number of species. Root-associated endophytic communities (bacteria and fungi) are known to differ depending on apple rootstock genotype. Thus, an additional aim of this study was to explore the effect of apple rootstock genotype on AMF community structure. A greenhouse experiment was conducted in which a variety of apple rootstock genotypes (G.890, G.935, M.26, and M.7) were inoculated with a commercially available, multi-species AMF consortium. Nursery-derived AMF communities were sequenced, and changes to AMF community structure following cultivation in pasteurized soil (inoculated and non-inoculated) were assessed using a Glomeromycota-specific phylogenetic tree, which included 91 different AMF species from 24 genera. Results show that inoculant colonization potential was limited and that apple rootstocks serve as a significant source of inoculum from the nursery where they are produced. Rootstocks established relationships with introduced AMF in a genotype-specific manner. Regardless of colonization success, however, the inoculant caused alterations to the resident AMF communities of both Geneva and Malling rootstocks, particularly low abundance taxa. In addition, phylogeny-based analysis revealed a unique, well-supported clade of unknown taxonomy, highlighting the importance of using phylogenetic-based classification for accurate characterization of AMF communities.IMPORTANCEUnderstanding the impacts of introduced AMF on residential AMF communities is essential to improving plant productivity in nursery and orchard systems. In general, there is a dearth of data on the interactions of commercial AMF inoculants with pre-established AMF communities living in symbiosis with the host plant. The interplay between apple rootstock genotype and the endophytic root microbiome is also an area where more research is needed. This study demonstrates the potential for nursery-established AMF associations to be maintained when transplanted into the field. In addition to providing insight into rootstock/AMF associations, our study calls attention to the current issues attendant with relying on web-based databases for determining AMF identity. The use of phylogenetic tools represents one possible solution and may be of value to industry practitioners in terms of improving product composition and consistency.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0193724"},"PeriodicalIF":3.9,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yulin Zhang, Derui Song, Peng Yao, Xiao-Hua Zhang, Jiwen Liu
{"title":"Time-decay patterns and irregular disturbance: contrasting roles of abundant and rare microbial communities in dynamic coastal seawater.","authors":"Yulin Zhang, Derui Song, Peng Yao, Xiao-Hua Zhang, Jiwen Liu","doi":"10.1128/aem.01751-24","DOIUrl":"https://doi.org/10.1128/aem.01751-24","url":null,"abstract":"<p><p>Microbial communities in coastal seas experience strong environmental disturbances, yet their response patterns, especially regarding differently abundant subcommunities, remain poorly understood. Here, through 16S rRNA gene amplicon sequencing, we investigated the diversity, time-decay pattern, and assembly process of abundant, conditionally rare taxa (CRT) and rare microbial subcommunities in temperate coastal waters over 60 consecutive weeks. The abundant (50.9%) and CRT (46.1%) communities each comprised approximately half of the planktonic community, while the CRT and rare communities contributed to the extremely high species diversity. Distinct temporal heterogeneity was observed among the three fractions and was associated with taxonomic level. The abundant subcommunity exhibited time-decay patterns at all taxonomic levels, while for CRT, the pattern was found only at finer levels. In contrast, variations of the rare community loosely followed a temporal rhythm and were largely confined within a specific taxonomic range, likely raised from turnovers among closely related taxa. Determinism dominated the community assembly of the abundant fraction, while the rare one was more controlled by stochasticity that may be related to pulse terrigenous inputs and anthropogenic disturbances. The rare subcommunity with narrow niche widths likely represented a stable repository to offer episodic specialists, while the abundant taxa that exhibited broader niche widths were considered the generalists in fluctuating environments. Our study revealed the distinct strategies that abundant and rare communities adopt to maintain community stability in temporal dynamics of prokaryotic plankton in the coastal seawater.</p><p><strong>Importance: </strong>The relative importance of rare and abundant taxa in microbial temporal patterns remains debated. Here, we identified taxonomically associated distinct diversity modes of abundant and rare subcommunities from a year-round time-series study in dynamic coastal seawater. We highlighted the significance of the rare subcommunity in maintaining community stability by serving as a repository to offer specialists driven by stochastic processes over time. The abundant subcommunity, by contrast, contributed mainly to temporal rhythmic variations. This study expands the current understanding of the temporal dynamics and stability of coastal microbial communities by revealing distinct variation patterns of subcommunities with different abundances.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0175124"},"PeriodicalIF":3.9,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Katie E Howland, Jack J Mouradian, Donald R Uzarski, Michael W Henson, Donald G Uzarski, Deric R Learman
{"title":"Nutrient amendments enrich microbial hydrocarbon degradation metagenomic potential in freshwater coastal wetland microcosm experiments.","authors":"Katie E Howland, Jack J Mouradian, Donald R Uzarski, Michael W Henson, Donald G Uzarski, Deric R Learman","doi":"10.1128/aem.01972-24","DOIUrl":"https://doi.org/10.1128/aem.01972-24","url":null,"abstract":"<p><p>Biostimulating native microbes with fertilizers has proven to be a highly effective strategy to speed up biodegradation rates in microbial communities. This study investigates the genetic potential of microbes to degrade light synthetic crude oil in a freshwater coastal wetland. Experimental sediment microcosms were exposed to a variety of conditions (biological control, a light synthetic crude oil amendment, and light synthetic crude oil with nutrient amendment) and incubated for 30 days before volatile organic compounds (BTEX) were quantified and DNA was sequenced for metagenomic analysis. The resulting DNA sequences were binned into metagenome-assembled genomes (MAGs). Analyses of MAGs uncovered a 13-fold significant increase in the abundance of rate-limiting hydrocarbon degrading monooxygenases and dioxygenases, identified only in MAGs from the light synthetic crude oil with nutrient amendments. Further, complete degradation pathways for BTEX compounds were found only in MAGs resulting from the light synthetic crude with nutrient amendment. Moreover, volatile organic compounds (BTEX, cyclohexane, and naphthalene) analyses of microcosm sediments in the presence of nutrients documented that benzene was degraded below detection limits, toluene (98%) and ethylbenzene (67%) were predominantly reduced within 30 days. Results indicate that the genetic potential to degrade BTEX compounds in this freshwater wetland can be linked to the functional potential for bioremediation. BTEX compounds are typically more recalcitrant and tougher to degrade than alkanes. This study demonstrated that stimulating a microbial community with nutrients to enhance its ability to biodegrade hydrocarbons, even in a relatively nutrient-rich habitat like a freshwater wetland, is an effective remediation tactic.</p><p><strong>Importance: </strong>The impact of oil spills in a freshwater aquatic environment can pose dire social, economic, and ecological effects on the region. An oil spill in the Laurentian Great Lakes region has the potential to affect the drinking water of more than 30 million people. The light synthetic crude oil used in this experimental microcosm study is transported through an underground pipeline crossing the waterway between two Laurentian Great Lakes. This study collected metagenomic data (experiments in triplicate) and assessed the quantity of BTEX compounds, which connected microbial degradation function to gene potential. The resulting data documented the bioremediation capabilities of native microbes in a freshwater coastal wetland. This study also provided evidence for this region that bioremediation can be a viable remediation strategy instead of invasive physical methods.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0197224"},"PeriodicalIF":3.9,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Surviving the storm: exploring the role of natural transformation in nutrition and DNA repair of stressed <i>Deinococcus radiodurans</i>.","authors":"Dhirendra Kumar Sharma, Ishu Soni, Yogendra Singh Rajpurohit","doi":"10.1128/aem.01371-24","DOIUrl":"https://doi.org/10.1128/aem.01371-24","url":null,"abstract":"<p><p><i>Deinococcus radiodurans</i>, a natural transformation (NT)-enabled bacterium renowned for its exceptional radiation resistance, employs unique DNA repair and oxidative stress mitigation mechanisms as a strategic response to DNA damage. This study excavates into the intricate roles of NT machinery in the stressed <i>D. radiodurans</i>, focusing on the genes <i>comEA</i>, <i>comEC</i>, <i>endA</i>, <i>pilT</i>, and <i>dprA</i>, which are instrumental in the uptake and processing of extracellular DNA (eDNA). Our data reveal that NT not only supports the nutritional needs of <i>D. radiodurans</i> under stress but also has roles in DNA repair. The study findings establish that NT-specific proteins (ComEA, ComEC, and endonuclease A [EndA]) may contribute to support the nutritional requirements in unstressed and heavily DNA-damaged cells, while DprA contributes differently and in a context-dependent manner to navigating through the DNA damage storm. Thus, this dual functionality of NT-specific genes is proposed to be a contributing factor in the remarkable ability of <i>D. radiodurans</i> to survive and thrive in environments characterized by high levels of DNA-damaging agents.IMPORTANCE<i>Deinococcus radiodurans</i> is a bacterium known for its extraordinary radiation resistance. This study explores the roles of NT machinery in the radiation-resistant bacterium <i>Deinococcus radiodurans</i>, focusing on the genes <i>comEA</i>, <i>comEC</i>, <i>endA</i>, <i>pilT</i>, and <i>dprA</i>. These genes are crucial for the uptake and processing of eDNA and contribute to the bacterium nutritional needs and DNA repair under stress. The findings suggest that the NT-specific proteins ComEA, ComEC, and EndA may help meet the nutritional needs of unstressed and heavily DNA-damaged cells, whereas DprA plays a distinct role that varies, depending on the context in aiding cells to cope with DNA damage. The functionality of NT genes is proposed to enhance <i>D. radiodurans</i> survival in environments with high levels of DNA-damaging agents.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0137124"},"PeriodicalIF":3.9,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142798967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M Khalid Ijaz, Bahram Zargar, Raymond W Nims, Julie McKinney, Syed A Sattar
{"title":"Rapid virucidal activity of an air sanitizer against aerosolized MS2 and Phi6 phage surrogates for non-enveloped and enveloped vertebrate viruses, including SARS-CoV-2.","authors":"M Khalid Ijaz, Bahram Zargar, Raymond W Nims, Julie McKinney, Syed A Sattar","doi":"10.1128/aem.01426-24","DOIUrl":"https://doi.org/10.1128/aem.01426-24","url":null,"abstract":"<p><p>An air sanitizer was evaluated using an aerobiology protocol, compliant with the U.S. Environmental Protection Agency's Air Sanitizer Guidelines, for virucidal activity against bacteriophages Phi6 and MS2 (used as surrogates for enveloped and non-enveloped human pathogenic viruses). The phages were suspended in a medium containing a tripartite soil load simulating body fluids and aerosolized using a six-jet Collison nebulizer in an enclosed 25 m<sup>3</sup> aerobiology chamber at 22 ± 2°C and 50 ± 10% relative humidity. The air sanitizer was sprayed into the chamber for 30 s. Viable phages in the air were captured directly, in real time, on host bacterial lawns using a slit-to-agar sampler. Reductions in viable phage concentration ≥3.0 log<sub>10</sub> (99.9%) were observed after a mean exposure of 3.6 min for Phi6, suggesting efficacy against enveloped viruses (e.g., SARS-CoV-2, influenza, and RSV), and ~10.6 min for MS2, suggesting virucidal efficacy for non-enveloped viruses (e.g., noroviruses and rhinoviruses). This targeted air sanitization approach represents an important non-pharmaceutical public health intervention with virucidal efficacy against airborne viral pathogens.IMPORTANCEAirborne viruses are implicated in the transmission indoors of respiratory and enteric viral infections. Air sanitizers represent a non-pharmaceutical intervention to mitigate the risk of such viral transmission. We have developed a method that is now an ASTM International standard (ASTM E3273-21) as well as a test protocol approved by the U.S. EPA to evaluate the efficacy of air sanitizing sprays for inactivating airborne MS2 and Phi6 bacteriophage (used as surrogates for non-enveloped and enveloped human pathogenic viruses, respectively). The test phages were individually suspended in a soil load and aerosolized into a room-sized aerobiology chamber maintained at ambient temperature and relative humidity. Reductions in viable phage concentration ≥3.0 log<sub>10</sub> (99.9%) were observed after a mean exposure of 3.6 min for Phi6, suggesting efficacy against enveloped viruses (e.g., SARS-CoV-2; influenza; RSV), and ~10.6 min for MS2, suggesting virucidal efficacy for non-enveloped viruses (e.g., noroviruses and rhinoviruses). The data suggest the utility of the air sanitizer for mitigating the risk of indoor viral transmission during viral pandemics and outbreaks.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0142624"},"PeriodicalIF":3.9,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783483","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Naeema Cheshomi, Absar Alum, Matthew F Smith, Efrem S Lim, Otakuye Conroy-Ben, Morteza Abbaszadegan
{"title":"Viral concentration method biases in the detection of viral profiles in wastewater.","authors":"Naeema Cheshomi, Absar Alum, Matthew F Smith, Efrem S Lim, Otakuye Conroy-Ben, Morteza Abbaszadegan","doi":"10.1128/aem.01339-24","DOIUrl":"https://doi.org/10.1128/aem.01339-24","url":null,"abstract":"<p><p>Viral detection methodologies used for wastewater-based epidemiology (WBE) studies have a broad range of efficacies. The complex matrix and low viral particle load in wastewater emphasize the importance of the concentration method. This study focused on comparing three commonly used virus concentration methods: polyethylene glycol precipitation (PEG), immuno-magnetic nanoparticles (IMNP), and electronegative membrane filtration (EMF). Influent and effluent wastewater samples were processed by the methods and analyzed by DNA/RNA quantification and sequencing for the detection of human viruses. SARS-COV-2, Astrovirus, and Hepatitis C virus were detected by all the methods in both sample types. PEG precipitation resulted in the detection of 20 types of viruses in influent and 16 types in effluent samples. The corresponding number of virus types detected was 21 and 11 for IMNP, and 16 and 8 for EMF. Certain viruses were unique to only one concentration method. For example, PEG detected three types of viruses in influent and six types in effluent compared to IMNP, which detected seven types in influent and one type in effluent samples. However, the EMF method appeared to be the least effective, detecting three types in influent and none in effluent samples. Rotavirus was detected in influent sample using IMNP method, whereas EMF and PEG methods failed to yield a similar outcome. Consequently, the potential false negative results pose a risk to the credibility of WBE applications. Therefore, implementation of a proper concentration technique is critical to minimize method biases and ensure accurate viral profiling in WBE studies.IMPORTANCEIn recent years, significant research efforts have been focused on the development of viral detection methodology for wastewater-based epidemiology studies, showing a range of variability in detection efficacies. A proper methodology is essential for an appropriate evaluation of disease prevalence and community health in such studies and necessitates designing a concentration method based on the target pathogenic virus. There remains a need for comparative performance evaluations of methods in the context of detection efficiencies. This study highlights the significant impact of sample matrix, viral structure, and nucleic acid composition on the efficacy of viral concentration methods. Assessing WBE techniques to ensure accurate detection and understanding of viral presence within wastewater samples is critical for revealing viral profiles in municipality wastewater samples.</p>","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0133924"},"PeriodicalIF":3.9,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microbiome dynamics and functional profiles in deep-sea wood-fall micro-ecosystem: insights into drive pattern of community assembly, biogeochemical processes, and lignocellulose degradation.","authors":"Zeming Bao, Biao Chen, Kefu Yu, Yuxin Wei, Xinyue Liang, Huanting Yao, Xianrun Liao, Wei Xie, Kedong Yin","doi":"10.1128/aem.02165-24","DOIUrl":"https://doi.org/10.1128/aem.02165-24","url":null,"abstract":"<p><p>Wood-fall micro-ecosystems contribute to biogeochemical processes in the oligotrophic deep ocean. However, the community assembly processes and biogeochemical functions of microbiomes in wood fall remain unclear. This study investigated the diversity, community structure, assembly processes, and functional profiles of bacteria and fungi in a deep-sea wood fall from the South China Sea using physicochemical indices, amplicon sequencing, and metagenomics. The results showed that distinct wood-fall contact surfaces exhibit habitat heterogeneity. The bacterial community of all contact surfaces and the fungal community of seawater contact surface (SWCS) were affected by homogeneous selection. In SWCS and transition region (TR), bacterial communities were influenced by dispersal limitation, whereas fungal communities were affected by homogenizing dispersal. The Venn diagram visualization revealed that the shared fungal community between SWCS and TR was dominated by Aspergillaceae. Additionally, the bacterial community demonstrated a higher genetic potential for sulfur, nitrogen, and methane metabolism than fungi. The sediment contact surface enriched modules were associated with dissimilatory sulfate reduction and methanogenesis, whereas the modules related to nitrate reduction exhibited enrichment characteristics in TR. Moreover, fungi showed a stronger potential for lignocellulase production compared to bacteria, with Microascaceae and Nectriaceae identified as potential contributors to lignocellulose degradation. These results indicate that environmental filtering and organism exchange levels regulated the microbial community assembly of wood fall. The biogeochemical cycling of sulfur, nitrogen, and methane was mainly driven by the bacterial community. Nevertheless, the terrestrial fungi Microascaceae and Nectriaceae might degrade lignocellulose via the combined action of multiple lignocellulases.IMPORTANCEThe presence and activity of microbial communities may play a crucial role in the biogeochemical cycle of deep-sea wood-fall micro-ecosystems. Previous studies on wood falls have focused on the microbiome diversity, community composition, and environmental impact, while few have investigated wood-fall micro-ecosystems by distinguishing among distinct contact surfaces. Our study investigated the microbiome dynamics and functional profiles of bacteria and fungi among distinct wood-fall contact surfaces. We found that the microbiome community assembly was regulated by environmental filtering and organism exchange levels. Bacteria drive the biogeochemical cycling of sulfur, nitrogen, and methane in wood fall through diverse metabolic pathways, whereas fungi are crucial for lignocellulose degradation. Ultimately, this study provides new insights into the driving pattern of community assembly, biogeochemical processes, and lignocellulose degradation in the microbiomes of deep-sea wood-fall micro-ecosystems, enhancing our comprehension of the ecolo","PeriodicalId":8002,"journal":{"name":"Applied and Environmental Microbiology","volume":" ","pages":"e0216524"},"PeriodicalIF":3.9,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142783914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}