Antónia Monteiro, Suriya Narayanan Murugesan, Anupama Prakash, Riccardo Papa
{"title":"The Developmental Origin of Novel Complex Morphological Traits in Lepidoptera.","authors":"Antónia Monteiro, Suriya Narayanan Murugesan, Anupama Prakash, Riccardo Papa","doi":"10.1146/annurev-ento-021324-020504","DOIUrl":"https://doi.org/10.1146/annurev-ento-021324-020504","url":null,"abstract":"<p><p>Novel traits in the order Lepidoptera include prolegs in the abdomen of larvae, scales, and eyespot and band color patterns in the wings of adults. We review recent work that investigates the developmental origin and diversification of these four traits from a gene-regulatory network (GRN) perspective. While prolegs and eyespots appear to derive from distinct ancestral GRNs co-opted to novel body regions, scales derive from in situ modifications of a sensory bristle GRN. The origin of the basal and central symmetry systems of bands on the wing is associated with the expression of the <i>WntA</i> gene in those regions, whereas the more marginal bands depend on two other genes, <i>Distal-less</i> and <i>spalt</i>. Finally, several genes have been discovered that play important roles in regulating background wing color, via the regulation of pigmentation GRNs. The identification of shared and novel <i>cis-</i>regulatory elements of genes belonging to these distinct GRNs helps trace the developmental and evolutionary history of these traits. Future work should examine the extent to which ancestral GRNs are co-opted/modified to produce the novel traits and how these GRNs map to specific cell types in ancestral and derived traits.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"70 1","pages":"421-439"},"PeriodicalIF":15.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143057753","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of entomologyPub Date : 2025-01-01Epub Date: 2024-12-19DOI: 10.1146/annurev-ento-040124-014001
Rudolf Meier, Mara K N Lawniczak, Amrita Srivathsan
{"title":"Illuminating Entomological Dark Matter with DNA Barcodes in an Era of Insect Decline, Deep Learning, and Genomics.","authors":"Rudolf Meier, Mara K N Lawniczak, Amrita Srivathsan","doi":"10.1146/annurev-ento-040124-014001","DOIUrl":"10.1146/annurev-ento-040124-014001","url":null,"abstract":"<p><p>Most insects encountered in the field are initially entomological dark matter in that they cannot be identified to species while alive. This explains the enduring quest for efficient ways to identify collected specimens. Morphological tools came first but are now routinely replaced or complemented with DNA barcodes. Initially too expensive for widespread use, these barcodes have since evolved into powerful tools for specimen identification and sorting, given that the evolution of sequencing approaches has dramatically reduced the cost of barcodes, thus enabling decentralized deployment across the planet. In this article, we review how DNA barcodes have become a key tool for accelerating biodiversity discovery and analyzing insect communities through both megabarcoding and metabarcoding in an era of insect decline. We predict that DNA barcodes will be particularly important for assembling image training sets for deep learning algorithms, global biodiversity genomics, and functional analysis of insect communities.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":" ","pages":"185-204"},"PeriodicalIF":15.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of entomologyPub Date : 2025-01-01Epub Date: 2024-12-19DOI: 10.1146/annurev-ento-012524-124018
Gao Hu, Hongqiang Feng, Akira Otuka, Don R Reynolds, V Alistair Drake, Jason W Chapman
{"title":"The East Asian Insect Flyway: Geographical and Climatic Factors Driving Migration Among Diverse Crop Pests.","authors":"Gao Hu, Hongqiang Feng, Akira Otuka, Don R Reynolds, V Alistair Drake, Jason W Chapman","doi":"10.1146/annurev-ento-012524-124018","DOIUrl":"10.1146/annurev-ento-012524-124018","url":null,"abstract":"<p><p>The East Asian Insect Flyway is a globally important migration route stretching from the Indochina Peninsula and the Philippines through East China to Northeast China and northern Japan, although most migrants utilize only part of the flyway. In this review, we focus on long-range windborne migrations of lepidopteran and planthopper pests. We outline the environment in which migrations occur, with emphasis on the seasonal atmospheric circulations that influence the transporting wind systems. Northward movement in spring is facilitated by favorable prevailing winds, allowing migrants to colonize vast areas of East Asia. Migrants may be subject to contemporary natural selection for long flights as succeeding generations progressively advance northward. Overshooting into far northern areas from which there is little chance of return seems common in planthoppers. Moths are less profligate and have evolved complex flight behaviors that can facilitate southward transport in autumn, although timely spells of favorable winds may not occur in some years.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":" ","pages":"1-22"},"PeriodicalIF":15.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581924","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of entomologyPub Date : 2025-01-01Epub Date: 2024-12-19DOI: 10.1146/annurev-ento-011624-013339
Stephen P Foster, Jérȏme Casas
{"title":"How Insect Exocrine Glands Work.","authors":"Stephen P Foster, Jérȏme Casas","doi":"10.1146/annurev-ento-011624-013339","DOIUrl":"10.1146/annurev-ento-011624-013339","url":null,"abstract":"<p><p>Exocrine glands release a secretion to the body surface or into a lumen and are likely to be found in all insect taxa. Their secretions are diverse, serving many physiological, behavioral, and defensive functions. Much research has characterized gland structure and secretion identity and function, but little research has attempted to understand how these glands work to release secretion amounts in a timescale appropriate to function: How are some (e.g., physiological) secretions released in small amounts over long times, while others (e.g., defense) are released in large amounts infrequently? We describe a qualitative model, comprising intracellular, extracellular, and external compartments for secretion storage; rates of movement of secretion from one compartment to the next; physicochemical properties of secretions; and controlling behaviors, which may explain the release dynamics of secretions from these glands. It provides a template for quantitative dynamic studies investigating the operation, control, release, and biomimetics of exocrine glands.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":" ","pages":"65-82"},"PeriodicalIF":15.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of entomologyPub Date : 2025-01-01Epub Date: 2024-12-19DOI: 10.1146/annurev-ento-040124-015101
Rachel Lowe, Claudia Torres Codeço
{"title":"Harmonizing Multisource Data to Inform Vector-Borne Disease Risk Management Strategies.","authors":"Rachel Lowe, Claudia Torres Codeço","doi":"10.1146/annurev-ento-040124-015101","DOIUrl":"10.1146/annurev-ento-040124-015101","url":null,"abstract":"<p><p>In the last few decades, we have witnessed the emergence of new vector-borne diseases (VBDs), the globalization of endemic VBDs, and the urbanization of previously rural VBDs. Data harmonization forms the basis of robust decision-support systems designed to protect at-risk communities from VBD threats. Strong interdisciplinary partnerships, protocols, digital infrastructure, and capacity-building initiatives are essential for facilitating the coproduction of robust multisource data sets. This review provides a foundation for researchers and practitioners embarking on data harmonization efforts to (<i>a</i>) better understand the links among environmental degradation, climate change, socioeconomic inequalities, and VBD risk; (<i>b</i>) conduct risk assessments, health impact attribution, and projection studies; and (<i>c</i>) develop robust early warning and response systems. We draw upon best practices in harmonizing data for two well-studied VBDs, dengue and malaria, and provide recommendations for the evolution of research and digital technology to improve data harmonization for VBD risk management.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":" ","pages":"337-358"},"PeriodicalIF":15.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142387426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of entomologyPub Date : 2025-01-01Epub Date: 2024-12-19DOI: 10.1146/annurev-ento-120523-023156
Yulin Gao, Andrei Alyokhin, Sean M Prager, Stuart Reitz, Anders Huseth
{"title":"Complexities in the Implementation and Maintenance of Integrated Pest Management in Potato.","authors":"Yulin Gao, Andrei Alyokhin, Sean M Prager, Stuart Reitz, Anders Huseth","doi":"10.1146/annurev-ento-120523-023156","DOIUrl":"10.1146/annurev-ento-120523-023156","url":null,"abstract":"<p><p>Integrated pest management (IPM) is an educated and systematic effort to use multiple control techniques to reduce pest damage to economically acceptable levels while minimizing negative environmental impacts. Although its benefits are widely acknowledged, IPM is not universally practiced by farmers. Potato farming, which produces one of the most important staple crops in the world, provides a good illustration of the issues surrounding IPM adoption. Potatoes are attacked by a complex of insect pests that can inflict catastrophic crop losses. Potato production has gone through the processes of consolidation and intensification, which are linked to increased pest problems, particularly selection for insecticide-resistant pest populations. While use of insecticides remains the most common method of pest control in potatoes, other techniques, including crop rotation and natural enemies, are also available. In addition, there are effective monitoring techniques for many potato pests. However, reliable economic thresholds are often lacking. Potato ecosystems are complex and diverse; therefore, the knowledge necessary for developing ecologically based pest management is not easily obtained or transferable. Furthermore, potato systems change with the arrival of new pest species and the evolution of existing pests. Modern technological advances, such as remote sensing and molecular biotechnology, are likely to improve potato IPM. However, these tools are not going to solve all problems. IPM is not just about integrating different techniques; it is also about integrating the efforts and concerns of all stakeholders. The collaboration of farmers and scientists in agricultural research is needed to foster the development of IPM systems that are appropriate for grower implementation and thus more likely to be adopted. Additional emphasis also needs to be placed on the fact that not only does IPM decrease degradation of the environment, but it also improves the economic well-being of its practitioners.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":" ","pages":"45-63"},"PeriodicalIF":15.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142124597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Annual review of entomologyPub Date : 2025-01-01Epub Date: 2024-12-19DOI: 10.1146/annurev-ento-022024-015159
Jacqueline C Bede, James D Blande
{"title":"Effects of Elevated CO<sub>2</sub> and O<sub>3</sub> on Aboveground Brassicaceous Plant-Insect Interactions.","authors":"Jacqueline C Bede, James D Blande","doi":"10.1146/annurev-ento-022024-015159","DOIUrl":"10.1146/annurev-ento-022024-015159","url":null,"abstract":"<p><p>Atmospheric gases, such as carbon dioxide (CO<sub>2</sub>) and ozone (O<sub>3</sub>), influence plant-insect interactions, with variable effects. The few studies that have investigated the direct effects of elevated CO<sub>2</sub> (eCO<sub>2</sub>; 750-900 ppm) or elevated O<sub>3</sub> (eO<sub>3</sub>; 60-200 ppb) on insects have shown mixed results. Instead, most research has focused on the indirect effects through changes in the host plant. In general, the lower nitrogen levels in C3 brassicaceous plants grown at eCO<sub>2</sub> negatively affect insects and may result in compensatory feeding. Phytohormones involved in plant resistance may be altered by eCO<sub>2</sub> or eO<sub>3</sub>. For example, stress-related jasmonate levels, which lead to induced resistance against chewing herbivores, are weakened at eCO<sub>2</sub>. In general, eCO<sub>2</sub> does not affect herbivore-induced plant volatiles, which remain attractive to natural enemies. However, floral volatiles and herbivore-induced plant volatiles may be degraded by O<sub>3</sub>, affecting pollination and foraging natural enemy behavior. Thus, eCO<sub>2</sub> and eO<sub>3</sub> alter plant-insect interactions; however, many aspects remain poorly understood.</p>","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":" ","pages":"205-227"},"PeriodicalIF":15.0,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insect Mitochondrial Genomics: A Decade of Progress","authors":"Stephen L. Cameron","doi":"10.1146/annurev-ento-013024-015553","DOIUrl":"https://doi.org/10.1146/annurev-ento-013024-015553","url":null,"abstract":"The past decade has seen the availability of insect genomic data explode, with mitochondrial (mt) genome data seeing the greatest growth. The widespread adoption of next-generation sequencing has solved many earlier methodological limitations, allowing the routine sequencing of whole mt genomes, including from degraded or museum specimens and in parallel to nuclear genomic projects. The diversity of available taxa now allows finer-scale comparisons between mt and nuclear phylogenomic analyses; high levels of congruence have been found for most orders, with some significant exceptions (e.g., Odonata, Mantodea, Diptera). The evolution of mt gene rearrangements and their association with haplodiploidy have been tested with expanded taxonomic sampling, and earlier proposed trends have been largely supported. Multiple model systems have been developed based on findings unique to insects, including mt genome fragmentation (lice and relatives) and control region duplication (thrips), allowing testing of hypothesized evolutionary drivers of these aberrant genomic phenomena. Finally, emerging research topics consider the contributions of mt genomes to insect speciation and habitat adaption, with very broad potential impacts. Integration between insect mt genomic research and other fields within entomology continues to be our field's greatest opportunity and challenge.","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"47 1","pages":""},"PeriodicalIF":23.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Evolution of Queen Pheromone Production and Detection in the Reproductive Division of Labor in Social Insect Colonies","authors":"Juergen Liebig, Etya Amsalem","doi":"10.1146/annurev-ento-022124-124437","DOIUrl":"https://doi.org/10.1146/annurev-ento-022124-124437","url":null,"abstract":"Structurally diverse queen pheromones and fertility signals regulate the reproductive division of labor of social insects, such as ants, termites, some bees, and some wasps. The independent evolution of sociality in these taxa allows for the exploration of how natural history differences in sender and receiver properties led to the evolution of these complex communication systems. While describing the different effects and the structural diversity of queen pheromones, we identify two major syndromes that mostly separate ants and wasps from bees and termites in their use of different pheromone classes. We compare olfactory receptor evolution among these groups and review physiological and hormonal links to fecundity and pheromone production. We explore the cases in which queen pheromone evolution is conserved, convergent, or parallel and those in which queen pheromone responses are more likely to be learned or innate. More mechanistic information about the pathways linking fecundity to queen pheromone production and perception could help close major knowledge gaps.","PeriodicalId":8001,"journal":{"name":"Annual review of entomology","volume":"12 1","pages":""},"PeriodicalIF":23.8,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142176895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}