{"title":"My Life in Changing Times: New Ideas and New Techniques.","authors":"Ruth M Lynden-Bell","doi":"10.1146/annurev-physchem-090319-054423","DOIUrl":"https://doi.org/10.1146/annurev-physchem-090319-054423","url":null,"abstract":"<p><p>I describe some of the science that I have been involved in during the last 60 years and the changes in equipment that made it possible. Starting with an interest in spectroscopy and measurement of NMR parameters, I moved to work on theoretical aspects of spin systems and infrared and Raman line shapes. This morphed into using the new technique of computer simulation to study such problems. The last half of my working life has concentrated on the application of computer simulation to a number of problems culminating in pioneering investigations of the behavior of ionic liquids.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"72 ","pages":"35-50"},"PeriodicalIF":14.7,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38872098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Prachi Sharma, Jie J Bao, Donald G Truhlar, Laura Gagliardi
{"title":"Multiconfiguration Pair-Density Functional Theory.","authors":"Prachi Sharma, Jie J Bao, Donald G Truhlar, Laura Gagliardi","doi":"10.1146/annurev-physchem-090419-043839","DOIUrl":"https://doi.org/10.1146/annurev-physchem-090419-043839","url":null,"abstract":"<p><p>Kohn-Sham density functional theory with the available exchange-correlation functionals is less accurate for strongly correlated systems, which require a multiconfigurational description as a zero-order function, than for weakly correlated systems, and available functionals of the spin densities do not accurately predict energies for many strongly correlated systems when one uses multiconfigurational wave functions with spin symmetry. Furthermore, adding a correlation functional to a multiconfigurational reference energy can lead to double counting of electron correlation. Multiconfiguration pair-density functional theory (MC-PDFT) overcomes both obstacles, the second by calculating the quantum mechanical part of the electronic energy entirely by a functional, and the first by using a functional of the total density and the on-top pair density rather than the spin densities. This allows one to calculate the energy of strongly correlated systems efficiently with a pair-density functional and a suitable multiconfigurational reference function. This article reviews MC-PDFT and related background information.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"72 ","pages":"541-564"},"PeriodicalIF":14.7,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38893284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spectroscopy and Scattering Studies Using Interpolated Ab Initio Potentials.","authors":"Ernesto Quintas-Sánchez, Richard Dawes","doi":"10.1146/annurev-physchem-090519-051837","DOIUrl":"https://doi.org/10.1146/annurev-physchem-090519-051837","url":null,"abstract":"<p><p>The Born-Oppenheimer potential energy surface (PES) has come a long way since its introduction in the 1920s, both conceptually and in predictive power for practical applications. Nevertheless, nearly 100 years later-despite astonishing advances in computational power-the state-of-the-art first-principles prediction of observables related to spectroscopy and scattering dynamics is surprisingly limited. For example, the water dimer, (H<sub>2</sub>O)<sub>2</sub>, with only six nuclei and 20 electrons, still presents a formidable challenge for full-dimensional variational calculations of bound states and is considered out of reach for rigorous scattering calculations. The extremely poor scaling of the most rigorous quantum methods is fundamental; however, recent progress in development of approximate methodologies has opened the door to fairly routine high-quality predictions, unthinkable 20 years ago. In this review, in relation to the workflow of spectroscopy and/or scattering studies, we summarize progress and challenges in the component areas of electronic structure calculations, PES fitting, and quantum dynamical calculations.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"72 ","pages":"399-421"},"PeriodicalIF":14.7,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38872100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Demystifying the Diffuse Vibrational Spectrum of Aqueous Protons Through Cold Cluster Spectroscopy.","authors":"Helen J Zeng, Mark A Johnson","doi":"10.1146/annurev-physchem-061020-053456","DOIUrl":"https://doi.org/10.1146/annurev-physchem-061020-053456","url":null,"abstract":"<p><p>The ease with which the pH is routinely determined for aqueous solutions masks the fact that the cationic product of Arrhenius acid dissolution, the hydrated proton, or H<sup>+</sup>(aq), is a remarkably complex species. Here, we review how results obtained over the past 30 years in the study of H<sup>+</sup>⋅(H<sub>2</sub>O)<i><sub>n</sub></i> cluster ions isolated in the gas phase shed light on the chemical nature of H<sup>+</sup>(aq). This effort has also revealed molecular-level aspects of the Grotthuss relay mechanism for positive-charge translocation in water. Recently developed methods involving cryogenic cooling in radiofrequency ion traps and the application of two-color, infrared-infrared (IR-IR) double-resonance spectroscopy have established a clear picture of how local hydrogen-bond topology drives the diverse spectral signatures of the excess proton. This information now enables a new generation of cluster studies designed to unravel the microscopic mechanics underlying the ultrafast relaxation dynamics displayed by H<sup>+</sup>(aq).</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"72 ","pages":"667-691"},"PeriodicalIF":14.7,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25424391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
John Mark P Martirez, Junwei Lucas Bao, Emily A Carter
{"title":"First-Principles Insights into Plasmon-Induced Catalysis.","authors":"John Mark P Martirez, Junwei Lucas Bao, Emily A Carter","doi":"10.1146/annurev-physchem-061020-053501","DOIUrl":"https://doi.org/10.1146/annurev-physchem-061020-053501","url":null,"abstract":"<p><p>The size- and shape-controlled enhanced optical response of metal nanoparticles (NPs) is referred to as a localized surface plasmon resonance (LSPR). LSPRs result in amplified surface and interparticle electric fields, which then enhance light absorption of the molecules or other materials coupled to the metallic NPs and/or generate hot carriers within the NPs themselves. When mediated by metallic NPs, photocatalysis can take advantage of this unique optical phenomenon. This review highlights the contributions of quantum mechanical modeling in understanding and guiding current attempts to incorporate plasmonic excitations to improve the kinetics of heterogeneously catalyzed reactions. A range of first-principles quantum mechanics techniques has offered insights, from ground-state density functional theory (DFT) to excited-state theories such as multireference correlated wavefunction methods. Here we discuss the advantages and limitations of these methods in the context of accurately capturing plasmonic effects, with accompanying examples.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"72 ","pages":"99-119"},"PeriodicalIF":14.7,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1146/annurev-physchem-061020-053501","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38677990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Atomic Force Microscopy: An Emerging Tool in Measuring the Phase State and Surface Tension of Individual Aerosol Particles.","authors":"Hansol D Lee, Alexei V Tivanski","doi":"10.1146/annurev-physchem-090419-110133","DOIUrl":"https://doi.org/10.1146/annurev-physchem-090419-110133","url":null,"abstract":"<p><p>Atmospheric aerosols are suspended particulate matter of varying composition, size, and mixing state. Challenges remain in understanding the impact of aerosols on the climate, atmosphere, and human health. The effect of aerosols depends on their physicochemical properties, such as their hygroscopicity, phase state, and surface tension. These properties are dynamic with respect to the highly variable relative humidity and temperature of the atmosphere. Thus, experimental approaches that permit the measurement of these dynamic properties are required. Such measurements also need to be performed on individual, submicrometer-, and supermicrometer-sized aerosol particles, as individual atmospheric particles from the same source can exhibit great variability in their form and function. In this context, this review focuses on the recent emergence of atomic force microscopy as an experimental tool in physical, analytical, and atmospheric chemistry that enables such measurements. Remaining challenges are noted and suggestions for future studies are offered.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"72 ","pages":"235-252"},"PeriodicalIF":14.7,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39142127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding and Controlling Intersystem Crossing in Molecules.","authors":"Christel M Marian","doi":"10.1146/annurev-physchem-061020-053433","DOIUrl":"https://doi.org/10.1146/annurev-physchem-061020-053433","url":null,"abstract":"<p><p>This review article focuses on the understanding of intersystem crossing (ISC) in molecules. It addresses readers who are interested in the phenomenon of intercombination transitions between states of different electron spin multiplicities but are not familiar with relativistic quantum chemistry. Among the spin-dependent interaction terms that enable a crossover between states of different electron spin multiplicities, spin-orbit coupling (SOC) is by far the most important. If SOC is small or vanishes by symmetry, ISC can proceed by electronic spin-spin coupling (SSC) or hyperfine interaction (HFI). Although this review discusses SSC- and HFI-based ISC, the emphasis is on SOC-based ISC. In addition to laying the theoretical foundations for the understanding of ISC, the review elaborates on the qualitative rules for estimating transition probabilities. Research on the mechanisms of ISC has experienced a major revival in recent years owing to its importance in organic light-emitting diodes (OLEDs). Exemplified by challenging case studies, chemical substitution and solvent environment effects are discussed with the aim of helping the reader to understand and thereby get a handle on the factors that steer the efficiency of ISC.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"72 ","pages":"617-640"},"PeriodicalIF":14.7,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25386245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wjatscheslaw Popp, Dominik Brey, Robert Binder, Irene Burghardt
{"title":"Quantum Dynamics of Exciton Transport and Dissociation in Multichromophoric Systems.","authors":"Wjatscheslaw Popp, Dominik Brey, Robert Binder, Irene Burghardt","doi":"10.1146/annurev-physchem-090419-040306","DOIUrl":"https://doi.org/10.1146/annurev-physchem-090419-040306","url":null,"abstract":"<p><p>Due to the subtle interplay of site-to-site electronic couplings, exciton delocalization, nonadiabatic effects, and vibronic couplings, quantum dynamical studies are needed to elucidate the details of ultrafast photoinduced energy and charge transfer events in organic multichromophoric systems. In this vein, we review an approach that combines first-principles parameterized lattice Hamiltonians with accurate quantum dynamical simulations using advanced multiconfigurational methods. Focusing on the elementary transfer steps in organic functional materials, we address coherent exciton migration and creation of charge transfer excitons in homopolymers, notably representative of the poly(3-hexylthiophene) material, as well as exciton dissociation at polymer:fullerene heterojunctions. We emphasize the role of coherent transfer, trapping effects due to high-frequency phonon modes, and thermal activation due to low-frequency soft modes that drive a diffusive dynamics.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"72 ","pages":"591-616"},"PeriodicalIF":14.7,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25408807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuezhi Mao, Matthias Loipersberger, Paul R Horn, Akshaya Das, Omar Demerdash, Daniel S Levine, Srimukh Prasad Veccham, Teresa Head-Gordon, Martin Head-Gordon
{"title":"From Intermolecular Interaction Energies and Observable Shifts to Component Contributions and Back Again: A Tale of Variational Energy Decomposition Analysis.","authors":"Yuezhi Mao, Matthias Loipersberger, Paul R Horn, Akshaya Das, Omar Demerdash, Daniel S Levine, Srimukh Prasad Veccham, Teresa Head-Gordon, Martin Head-Gordon","doi":"10.1146/annurev-physchem-090419-115149","DOIUrl":"https://doi.org/10.1146/annurev-physchem-090419-115149","url":null,"abstract":"<p><p>Quantum chemistry in the form of density functional theory (DFT) calculations is a powerful numerical experiment for predicting intermolecular interaction energies. However, no chemical insight is gained in this way beyond predictions of observables. Energy decomposition analysis (EDA) can quantitatively bridge this gap by providing values for the chemical drivers of the interactions, such as permanent electrostatics, Pauli repulsion, dispersion, and charge transfer. These energetic contributions are identified by performing DFT calculations with constraints that disable components of the interaction. This review describes the second-generation version of the absolutely localized molecular orbital EDA (ALMO-EDA-II). The effects of different physical contributions on changes in observables such as structure and vibrational frequencies upon complex formation are characterized via the adiabatic EDA. Example applications include red- versus blue-shifting hydrogen bonds; the bonding and frequency shifts of CO, N<sub>2</sub>, and BF bound to a [Ru(II)(NH<sub>3</sub>)<sub>5</sub>]<sup>2 +</sup> moiety; and the nature of the strongly bound complexes between pyridine and the benzene and naphthalene radical cations. Additionally, the use of ALMO-EDA-II to benchmark and guide the development of advanced force fields for molecular simulation is illustrated with the recent, very promising, MB-UCB potential.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"72 ","pages":"641-666"},"PeriodicalIF":14.7,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25408808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tim J Zuehlsdorff, Sapana V Shedge, Shao-Yu Lu, Hanbo Hong, Vincent P Aguirre, Liang Shi, Christine M Isborn
{"title":"Vibronic and Environmental Effects in Simulations of Optical Spectroscopy.","authors":"Tim J Zuehlsdorff, Sapana V Shedge, Shao-Yu Lu, Hanbo Hong, Vincent P Aguirre, Liang Shi, Christine M Isborn","doi":"10.1146/annurev-physchem-090419-051350","DOIUrl":"https://doi.org/10.1146/annurev-physchem-090419-051350","url":null,"abstract":"<p><p>Including both environmental and vibronic effects is important for accurate simulation of optical spectra, but combining these effects remains computationally challenging. We outline two approaches that consider both the explicit atomistic environment and the vibronic transitions. Both phenomena are responsible for spectral shapes in linear spectroscopy and the electronic evolution measured in nonlinear spectroscopy. The first approach utilizes snapshots of chromophore-environment configurations for which chromophore normal modes are determined. We outline various approximations for this static approach that assumes harmonic potentials and ignores dynamic system-environment coupling. The second approach obtains excitation energies for a series of time-correlated snapshots. This dynamic approach relies on the accurate truncation of the cumulant expansion but treats the dynamics of the chromophore and the environment on equal footing. Both approaches show significant potential for making strides toward more accurate optical spectroscopy simulations of complex condensed phase systems.</p>","PeriodicalId":7967,"journal":{"name":"Annual review of physical chemistry","volume":"72 ","pages":"165-188"},"PeriodicalIF":14.7,"publicationDate":"2021-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39126539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}