Anti-cancer agents in medicinal chemistry最新文献

筛选
英文 中文
Selected Metal (Au, Ag, and Cu) Complexes of N-heterocyclic Ligands as Potential Anticancer Agents: A Review. n -杂环配体中金属(Au, Ag和Cu)配合物作为潜在抗癌剂的研究进展
IF 2.6 4区 医学
Anti-cancer agents in medicinal chemistry Pub Date : 2025-01-03 DOI: 10.2174/0118715206331002241119145651
Meshal Alshamrani
{"title":"Selected Metal (Au, Ag, and Cu) Complexes of N-heterocyclic Ligands as Potential Anticancer Agents: A Review.","authors":"Meshal Alshamrani","doi":"10.2174/0118715206331002241119145651","DOIUrl":"https://doi.org/10.2174/0118715206331002241119145651","url":null,"abstract":"<p><p>Nitrogen-based organic heterocyclic compounds are an important source of therapeutic agents. About 75% of drugs approved by the FDA and currently available in the market are N-heterocyclic organic compounds. The N-heterocyclic organic compounds like pyridine, indole, triazoles, triazine, imidazoles, benzimidazoles, quinazolines, pyrazoles, quinolines, pyrimidines, porphyrin, etc. have demonstrated significant biological activities. These heterocyclic organic compounds also coordinate with various metal ions and form coordination compounds. Most of them have shown improved biological activities. The research on the metal complexes of these compounds reported their significant biological activities. N-heterocyclic-based metal complexes showed outstanding anticancer activities against different cancer cell lines, including VEGFR-2, HT-29, MDA-MB-231, MCF-7 K562, A549, HepG2, HL60, A2780, WI-38, Colo-205, PC-3, and other cancer cell lines. Some of these compounds showed better anticancer activity than cisplatin. In this review, we summarized the anticancer properties of N-heterocyclic-based gold (Au), silver (Ag), and copper (Cu) complexes and explored the mechanisms of action and potential structure-activity relationships (SAR) of these complexes. Our goal is to assist researchers in designing highly potent N-heterocyclic-based Au, Ag, and Cu complexes for the potential treatment of various cancers.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Dual Role of ADAMTS9-AS1 in Various Human Cancers: Molecular Pathogenesis and Clinical Implications. ADAMTS9-AS1在多种人类癌症中的双重作用:分子发病机制和临床意义。
IF 2.6 4区 医学
Anti-cancer agents in medicinal chemistry Pub Date : 2025-01-03 DOI: 10.2174/0118715206359325241119075640
Haodong He, Jingjie Yang, Yan Zhou, Xinyan Zheng, Lihan Chen, Zhujun Mao, Chuyuan Liao, Tongtong Li, Haoran Liu, Gang Zhou, Houdong Li, Chengfu Yuan
{"title":"The Dual Role of ADAMTS9-AS1 in Various Human Cancers: Molecular Pathogenesis and Clinical Implications.","authors":"Haodong He, Jingjie Yang, Yan Zhou, Xinyan Zheng, Lihan Chen, Zhujun Mao, Chuyuan Liao, Tongtong Li, Haoran Liu, Gang Zhou, Houdong Li, Chengfu Yuan","doi":"10.2174/0118715206359325241119075640","DOIUrl":"https://doi.org/10.2174/0118715206359325241119075640","url":null,"abstract":"<p><p>Long non-coding RNA (lncRNA) is a type of non-coding RNA distinguished by a length exceeding 200 nucleotides. Recent studies indicated that lncRNAs participate in various biological processes, such as chromatin remodeling, transcriptional and post-transcriptional regulation, and the modulation of cell proliferation, death, and differentiation, hence influencing gene expression and cellular function. ADAMTS9-AS1, an antisense long non-coding RNA situated on human chromosome 3p14.1, has garnered significant interest due to its pivotal involvement in the advancement and spread of diverse malignant tumors. ADAMTS9-AS1 functions as a competitive endogenous RNA (ceRNA) that interacts with multiple microRNAs (miRNAs) and plays a crucial role in regulating gene expression and cellular functions by modulating essential signaling pathways, including PI3K/AKT/mTOR, Wnt/β-catenin, and Ras/MAPK pathways. Dysregulation of this factor has been linked to tumor development, migration, invasion, and resistance to apoptotic mechanisms, including as iron-induced apoptosis, underscoring its intricate function in cancer pathology. While current research has clarified certain pathways involved in cancer formation, additional clinical and in vivo investigations are necessary to enhance comprehension of its specific involvement across various cancer types. This review encapsulates the recent discoveries on the correlation of ADAMTS9-AS1 with numerous malignancies, clarifying its molecular mechanisms and its prospective role as a therapeutic target in oncology. Furthermore, it identifies ADAMTS9-AS1 as a potential early diagnostic biomarker and therapeutic target, offering novel opportunities for targeted intervention in oncology.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pioneering a New Era in Oral Cancer Treatment with Electrospun Nanofibers: A Comprehensive Insight. 开创电纺纳米纤维治疗口腔癌新时代:全面洞察。
IF 2.6 4区 医学
Anti-cancer agents in medicinal chemistry Pub Date : 2025-01-03 DOI: 10.2174/0118715206348821241119100134
Devika Tripathi, Tanya Gupta, Awani Kumar Rai, Prashant Pandey
{"title":"Pioneering a New Era in Oral Cancer Treatment with Electrospun Nanofibers: A Comprehensive Insight.","authors":"Devika Tripathi, Tanya Gupta, Awani Kumar Rai, Prashant Pandey","doi":"10.2174/0118715206348821241119100134","DOIUrl":"https://doi.org/10.2174/0118715206348821241119100134","url":null,"abstract":"<p><p>Oral cancer, currently ranked 16th among the most prevalent malignancies worldwide according to GLOBOCAN, presents significant challenges to global oral health. Conventional treatment modalities such as surgery, radiation, and chemotherapy often have limitations, prompting the need for innovative therapeutic approaches. Tissue engineering has emerged as a promising solution aimed at developing biocompatible, functional, and biologically responsive tissue constructs. This approach involves the integration of cells, bioactive compounds, and scaffolds to enhance treatment efficacy. Electrospun nanofibers, mimicking the extracellular matrix, exhibit considerable potential in addressing complex oral health issues by influencing cellular behavior. The versatility of electrospinning technology allows for the fabrication of fiber scaffolds with high surface area, making them ideal for localized delivery of bioactive compounds or pharmaceuticals. Enhancing these electrospun scaffolds with growth factors, nanoparticles, and biologically active substances significantly increases their therapeutic appeal in oral cancer management. This review offers a comprehensive examination of the various applications of electrospun nanofibers in oral cancer therapy. Utilizing electronic databases such as PubMed, CrossREF, and Google Scholar, we conducted an extensive review of relevant literature concerning \"electrospun nanofibers\" and their therapeutic potential in oral cancer treatment. Key topics addressed include engineering methodologies, drug diffusion mechanisms, factors influencing nanofiber scaffold design, toxicity concerns, and clinical implications. The findings underscore the transformative potential of electrospun nanofibers in revolutionizing oral cancer therapy.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Function of Poly (U) Binding Splicing Factor 60 (PUF60) in Disease Regulation. 聚(U)结合剪接因子60 (PUF60)在疾病调控中的作用
IF 2.6 4区 医学
Anti-cancer agents in medicinal chemistry Pub Date : 2025-01-03 DOI: 10.2174/0118715206346843241119105519
Huijuan Chen, Tian Guan, Jingfeng Song, Yihua Chen
{"title":"The Function of Poly (U) Binding Splicing Factor 60 (PUF60) in Disease Regulation.","authors":"Huijuan Chen, Tian Guan, Jingfeng Song, Yihua Chen","doi":"10.2174/0118715206346843241119105519","DOIUrl":"https://doi.org/10.2174/0118715206346843241119105519","url":null,"abstract":"<p><p>The alternative splicing (AS) of pre-mRNA is an important process in controlling the expression of human genes, which can enrich the diversity of the proteome and regulate gene function. On the contrary, aberrant splicing contributes significantly to numerous human diseases progression, including tumors, neurological diseases, metabolic diseases, infections, and immune diseases. The PUF60, a protein related to RNA splicing, plays critical functions in RNA splicing and gene transcription regulation. In addition, it can achieve synergistic binding with U2AF65 on RNA through interactions in the pyrimidine region, promoting the splicing of introns with weak 3'- splice sites and pyrimidine bundles. Nevertheless, an increasing amount of evidence supports that it shows a significant overexpression pattern in the vast majority of cancer cells and is crucial for embryonic development, indicating that PUF60 may hold the post of a potential therapeutic target for such diseases. These studies have significantly increased our interest in PUF60. Thus, we briefly reviewed the structural domain characteristics of the PUF60, splicing mutants of PUF60, and the roles and functions in human diseases, including various cancers, infections of bacterium and viruses, myositis, and Verheij syndrome. Furthermore, the targeted PUF60 inhibitors and boundedness of the current research were elaborated on in the article. The article effectively communicates critical perception and insight, making it a precious resource for those interested in PUF60 research and treatment.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142942994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cucurbitacin E Glucoside as an Apoptosis Inducer in Melanoma Cancer Cells by Modulating AMPK/PGK1/PKM2 Pathway. 葫芦素E糖苷通过调节AMPK/PGK1/PKM2通路在黑色素瘤癌细胞中的凋亡诱导作用
IF 2.6 4区 医学
Anti-cancer agents in medicinal chemistry Pub Date : 2025-01-02 DOI: 10.2174/0118715206345600241216053948
Mohammed Abdalla Hussein, Aya Sayed Sallam, Shaza Ahmed Mohamed, Amera Mahmoud Abdel-Rady, Adam Mostafa Maghrabe, Abdelrahman Wahdan Soltan, Hanan Mohamed Abdelhamid, Gaber E Eldesoky, Seikh Mafiz Alam, Mohammad Shahidul Islam
{"title":"Cucurbitacin E Glucoside as an Apoptosis Inducer in Melanoma Cancer Cells by Modulating AMPK/PGK1/PKM2 Pathway.","authors":"Mohammed Abdalla Hussein, Aya Sayed Sallam, Shaza Ahmed Mohamed, Amera Mahmoud Abdel-Rady, Adam Mostafa Maghrabe, Abdelrahman Wahdan Soltan, Hanan Mohamed Abdelhamid, Gaber E Eldesoky, Seikh Mafiz Alam, Mohammad Shahidul Islam","doi":"10.2174/0118715206345600241216053948","DOIUrl":"https://doi.org/10.2174/0118715206345600241216053948","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Background: &lt;/strong&gt;Cucurbitacin E glucoside (CEG), a prominent constituent of Cucurbitaceae plants, exhibits notable effects on cancer cell behavior, including inhibition of invasion and migration, achieved through mechanisms such as apoptosis induction, autophagy, cell cycle arrest, and disruption of the actin cytoskeleton.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Objective: &lt;/strong&gt;Melanoma, the fastest-growing malignancy among young individuals in the United States and the predominant cancer among young adults aged 25 to 29, poses a significant health threat. This study aims to elucidate the apoptotic mechanism of CEG against the melanoma cancer cell line (A375).&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Methods: &lt;/strong&gt;The study estimated the IC50 of CEG against the A375 cell line and assessed cell viability, apoptosis, and necrosis upon CEG treatment. Additionally, IC50 values of CEG against Phosphoglycerate kinase1 (PGK1) and Pyruvate Kinase M2 (PKM2) were determined at various levels of concentrations. The impact of CEG on intracellular glutathione (GSH) levels and the activity of key enzymes (GR, SOD, GPx, CAT), as well as markers of apoptosis (P53), and cell cycle regulation (cyclin D1, cyclin E2, cdk2, cdk4), were estimated. Finally, the level of AMP-activated protein kinase (AMPK), PGK1, and PKM2 gene expression levels in A375 cells were also evaluated.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Results: &lt;/strong&gt;The IC50 value of CEG against A375 cells was determined to be 41.87 ± 2.47 µg/mL. A375 cells treated with CEG showed a significant increase in the G0/G1 phase and a decrease in the S and G2/M phases, indicating cell cycle arrest and reduced proliferation. Additionally, there was an increase in the sub-G1 peak, suggesting enhanced apoptosis. Additionally, the pharmacological analysis revealed potent inhibitory activity of CEG against both PGK1 and PKM2 gene expression, with IC50 values 27.89, 11.70, 7.43 and 2.74 µg/mL after incubation periods intervals of 30, 60, 90 and 120 minutes, respectively. In In-Silico study, computational simulations showed a strong binding affinity of CEG towards AMPK, PGK1, and PKM2 activities, with estimated binding energy (∆G) values of -6.5, -7.9, and -8.3 kcal/mol, respectively. Furthermore, incubation of A375 cells with CEG (at concentrations of 20.9, 41.87, and 83.74 µg/mL) led to a significant decrease in GSH levels and the activity of GR, SOD, GPx, CAT, cyclin D1, cyclin E2, cdk2, and cdk4. Notably, CEG treatment upregulated AMPK levels while downregulating PGK1 and PKM2 gene expression significantly.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusion: &lt;/strong&gt;CEG induces apoptosis in melanoma cancer cells (A375) through various mechanisms, including enhanced production of P53 and MDA, inhibition of key enzymes (GR, SOD, GPx, CAT) involved in oxidative stress defense and production of cell cycle regulating enzymes (cyclin D1, cyclin E2, cdk2, cdk4, and upregulation of AMPK and downregulation PGK1, and PKM2 in A375 tumor cells pathways. The downregulation of PKM2 in CEG-treated A375 c","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142929958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Prospectives of Cellular Signaling Role for Mammary Gland Carcinogenesis. 细胞信号在乳腺癌变中的作用研究进展。
IF 2.6 4区 医学
Anti-cancer agents in medicinal chemistry Pub Date : 2025-01-01 DOI: 10.2174/0118715206319933241104100736
Monu Kumar Kashyap, Sikma Roy, Shiwani Jaiswal, Shweta Verma, Siddhartha Srivastava, Amit Kumar Nigam, Awadhesh Kumar, Bandana Singh, Ved Prakash Tiwari, Mahima Mahima, Akash Ved, Karuna S Shukla, Namrata Singh
{"title":"Recent Prospectives of Cellular Signaling Role for Mammary Gland Carcinogenesis.","authors":"Monu Kumar Kashyap, Sikma Roy, Shiwani Jaiswal, Shweta Verma, Siddhartha Srivastava, Amit Kumar Nigam, Awadhesh Kumar, Bandana Singh, Ved Prakash Tiwari, Mahima Mahima, Akash Ved, Karuna S Shukla, Namrata Singh","doi":"10.2174/0118715206319933241104100736","DOIUrl":"https://doi.org/10.2174/0118715206319933241104100736","url":null,"abstract":"<p><p>In women globally, breast cancer ranks as the second most frequent cause of cancer-related deaths, making up about 25% of female cancer cases, which is pretty standard in affluent countries. Breast cancer is divided into subtypes based on aggressive, genetic and stage. The precise cause of the problem is still unknown. However, the following significant risk factors have been found: sex, age, heredity, not having children, breastfeeding, elevated hormone levels, and personal lifestyle. The presence or lack of three nuclear receptors ER, PR, and HER2/ERBB2 (triple negative) and the amplification of the HER2/ErbB2 gene are the clinical criteria used to classify breast cancer. Chemotherapy is still the cornerstone of treatment for triple-negative breast cancer (TNBC), even. If, for the first two groups of patients,receptor-specific therapy is used. The most often prescribed chemotherapy agents for the treatment of breast cancer include doxorubicin (DOX), curcumin paclitaxel (PTX), docetaxel (DCX), thioridazine (THZ), disulfiram (DSF), and camptothecin (CPT). Monoclonal antibodies (mAbs) were used in antibody-drug conjugates (ADCs) to bind tumor-associated target antigens selectively and deliver very effective cytotoxic agents. According to recent research, synthetic derivatives effectively combat both MCF- 7 and breast cancer cell lines that are resistant to many drugs. This review provides a wealth of information on the mechanism of action of synthetic derivatives on multidrug-resistant cell lines. This review includes information about how synthetic derivatives affect cancer cells that have developed multidrug resistance during chemotherapy. These mechanisms have been linked to factors such as increased drug efflux, genetic factors, growth factors, increased DNA repair capacity, and elevated xenobiotic metabolism. Because of this, more research is necessary to learn more about the effectiveness of synthetic derivatives against breast cancer and cell lines that are resistant to several drugs. This review aims to find recent prospects of various types of cellular signaling pathways (JAK/STAT, Akt, MAPK, etc.) involved in the progression of breast cancer disorder, and we also study different synthetic and natural drugs that are applied for treating breast cancer.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926269","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Novel Celecoxib Derivative, RF26, Blocks Colon Cancer Cell Growth by Inhibiting PDE5, Activating cGMP/PKG Signaling, and Suppressing β-catenin-dependent Transcription. 新型塞来昔布衍生物 RF26 通过抑制 PDE5、激活 cGMP/PKG 信号和抑制β-catenin依赖性转录阻断结肠癌细胞生长
IF 2.6 4区 医学
Anti-cancer agents in medicinal chemistry Pub Date : 2025-01-01 DOI: 10.2174/0118715206318802240821114353
Sara Sigler, Mohammad Abdel-Halim, Reem K Fathalla, Luciana Madeira Da Silva, Adam B Keeton, Yulia Y Maxuitenko, Kristy L Berry, Gang Zhou, Matthias Engel, Ashraf H Abadi, Gary A Piazza
{"title":"Novel Celecoxib Derivative, RF26, Blocks Colon Cancer Cell Growth by Inhibiting PDE5, Activating cGMP/PKG Signaling, and Suppressing β-catenin-dependent Transcription.","authors":"Sara Sigler, Mohammad Abdel-Halim, Reem K Fathalla, Luciana Madeira Da Silva, Adam B Keeton, Yulia Y Maxuitenko, Kristy L Berry, Gang Zhou, Matthias Engel, Ashraf H Abadi, Gary A Piazza","doi":"10.2174/0118715206318802240821114353","DOIUrl":"10.2174/0118715206318802240821114353","url":null,"abstract":"<p><strong>Background: </strong>Previous studies have reported that the cGMP-specific PDE5 isozyme is overexpressed in colon adenomas and adenocarcinomas and essential for colon cancer cell proliferation, while PDE5 selective inhibitors (e.g., sildenafil) have been reported to have cancer chemopreventive activity.</p><p><strong>Aim: </strong>This study aimed to determine the anticancer activity of a novel PDE5 inhibitor, RF26, using colorectal cancer (CRC) cells and the role of PDE5 in CRC tumor growth <i>in vivo</i>.</p><p><strong>Objective: </strong>The objective of this study was to characterize the anticancer activity of a novel celecoxib derivative, RF26, in CRC cells previously reported to lack COX-2 inhibition but have potent PDE5 inhibitory activity.</p><p><strong>Methods: </strong>Anticancer activity of RF26 was studied using human CRC cell lines. Effects on cell growth, cGMPdependent protein kinase (PKG) activity, β-catenin levels, TCF/LEF transcriptional activity, cell cycle distribution, and apoptosis were measured. CRISPR/cas9 PDE5 knockout techniques were used to determine if PDE5 mediates the anticancer activity of RF26 and validate PDE5 as a cancer target.</p><p><strong>Results: </strong>RF26 was appreciably more potent than celecoxib and sildenafil to suppress CRC cell growth and was effective at concentrations that activated PKG signaling. RF26 suppressed β-catenin levels and TCF/LEF transcriptional activity and induced G1 cell cycle arrest and apoptosis within the same concentration range. CRISPR/cas9 PDE5 knockout CRC cells displayed reduced sensitivity to RF26, proliferated slower than parental cells, and failed to establish tumors in mice.</p><p><strong>Conclusion: </strong>Further evaluation of RF26 for the prevention or treatment of cancer and studying the role of PDE5 in tumorigenesis are warranted.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":"52-62"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118831","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Updated Review on Dysregulated lncRNAs and their Contribution to the Various Molecular Types of Lung Carcinoma. 失调lncrna及其在肺癌各种分子类型中的作用的最新综述。
IF 2.6 4区 医学
Anti-cancer agents in medicinal chemistry Pub Date : 2025-01-01 DOI: 10.2174/0118715206336608241104065557
Narges Dastmalchi, Mohammad Reza Alipour, Reza Safaralizadeh, Khalil Hajiasgharzadeh
{"title":"An Updated Review on Dysregulated lncRNAs and their Contribution to the Various Molecular Types of Lung Carcinoma.","authors":"Narges Dastmalchi, Mohammad Reza Alipour, Reza Safaralizadeh, Khalil Hajiasgharzadeh","doi":"10.2174/0118715206336608241104065557","DOIUrl":"https://doi.org/10.2174/0118715206336608241104065557","url":null,"abstract":"<p><p>Lung cancer is correlated with a high death rate, with approximately 1.8 million mortality cases reported worldwide in 2022. Despite development in the control of lung cancer, most cases are detected at higher stages with short survival rates. This reveals a need to recognize novel techniques to treat malignancy and decrease the burden of lung cancer. Long noncoding RNAs (lncRNAs) manage vital cellular and biochemical functions. lncRNAs play crucial roles in transcriptional and translational processes and signaling cascades. Recently, lncRNAs have been reported to be associated with malignancy where their expression is deregulated, leading to abnormal cellular activities and signaling pathways. In various malignancies, including lung cancer, lncRNA deregulation disrupts normal cellular function, promoting tumorigenesis and influencing patient outcomes and treatment responses. Studies have shown that lncRNAs can act as both oncogenes and tumor suppressors, depending on the lung cancer subtype, specifically in Non-small Cell Lung Cancer (NSCLC) and Small Cell Lung Cancer (SCLC). This dual role of lncRNAs as critical biomarkers might provide insights into lung cancer development and progression. lncRNAs have been discussed as key biomarkers in lung cancer. A comprehensive understanding of the biological activities of lncRNAs in NSCLC and SCLC may improve prognosis, diagnosis, and therapeutic methods. Researchers are increasingly interested in lncRNAs as potential diagnostic biomarkers and therapeutic targets in cancer treatment. As researchers continue to explore lncRNAs, their pivotal roles in lung cancer become increasingly evident. This review highlights the function of lncRNAs in lung carcinogenesis and discusses their molecular mechanisms of function.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening and in vitro Biological Evaluation of Novel Multiple Tyrosine Kinases Inhibitors as Promising Anticancer Agents 摘要:新型多种酪氨酸激酶抑制剂的筛选及体外生物学评价
IF 2.6 4区 医学
Anti-cancer agents in medicinal chemistry Pub Date : 2025-01-01 DOI: 10.2174/1871520623666230403104816
Xiuying Li, Pinglang Ruan, Gang Jiang, Weidong Zhang
{"title":"Screening and in vitro Biological Evaluation of Novel Multiple Tyrosine Kinases Inhibitors as Promising Anticancer Agents","authors":"Xiuying Li, Pinglang Ruan, Gang Jiang, Weidong Zhang","doi":"10.2174/1871520623666230403104816","DOIUrl":"10.2174/1871520623666230403104816","url":null,"abstract":"<p><strong>Background: </strong>Tyrosine kinases have emerged as key stimulatory drivers in several cancer-related pathways. This is particularly evident in non-small cell lung cancer with regulating cell growth and apoptosis and so on. Tyrosine kinase inhibitors (TKI) are one breakthrough option that could improve the life quality of cancer patients.</p><p><strong>Objective: </strong>This study aims to find more effective tyrosine kinase inhibitors.</p><p><strong>Methods: </strong>In this study, natural products from TargetMol that may be the potential TKI for lung cancer were screened through structure-based virtual screening and experimental validation. Moreover, the binding between the hit compounds and tyrosine kinase was explored.</p><p><strong>Results: </strong>From the study findings, Gramicidin and Tannic acid have strong interactions with the four tyrosine kinases (ALK, TRK, MET, and ABL), and this could significantly inhibit the viability of A549 cells in a concentrationdependent manner.</p><p><strong>Conclusion: </strong>These findings indicated that Gramicidin and Tannic acid might be potential multiple TKI and are promising anticancer agents that call for further study.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9254173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Promising Paradigm Shift in Cancer Treatment with FGFR Inhibitors. 利用表皮生长因子受体抑制剂治疗癌症的范式转变前景广阔。
IF 2.6 4区 医学
Anti-cancer agents in medicinal chemistry Pub Date : 2025-01-01 DOI: 10.2174/0118715206318833240819031953
Anuradha Mehra, Rekha Sangwan
{"title":"A Promising Paradigm Shift in Cancer Treatment with FGFR Inhibitors.","authors":"Anuradha Mehra, Rekha Sangwan","doi":"10.2174/0118715206318833240819031953","DOIUrl":"10.2174/0118715206318833240819031953","url":null,"abstract":"<p><p>FGFR have been demonstrated to perform a crucial role in biological processes but their overexpression has been perceived as the operator component in the occurrence and progression of different types of carcinoma. Out of all the interest around cancer, FGFR inhibitors have assembled pace over the past few years. Therefore, FGFR inhibitors are one of the main fundamental tools to reverse drug resistance, tumor growth, and angiogenesis. Currently, many FGFR inhibitors are under the development stage or have been developed. Due to great demand and hotspots, different pharmacophores were approached to access structurally diverse FGFR inhibitors. Here, we have selected to present several representative examples such as Naphthyl, Pyrimidine, Pyridazine, Indole, and Quinoline derivatives that illustrate the diversity and advances of FGFR inhibitors in medicinal chemistry. This review focuses on the SAR study of FGFR inhibitors last five years which will be a great future scope that influences the medicinal chemist to work towards more achievements in this area.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":"2-23"},"PeriodicalIF":2.6,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信