{"title":"黏菌中的抗癌化合物:现状和未来展望。","authors":"Swati Sihag, Shweta Sinha, Ramandeep Kaur","doi":"10.2174/0118715206384510250625004749","DOIUrl":null,"url":null,"abstract":"<p><p>Natural products and their derivatives have played a dominant role in the development of therapeutic agents. Traditionally, most of the natural products developed for the effective treatment of different diseases have been sourced from plants. Natural product discovery has seen a shift of focus towards microorganisms due to the chemical diversity of bioactive products they synthesize. Myxobacteria produce a large variety of novel chemical entities with diverse structures and varied bioactivities. In the last few decades, secondary metabolites from different genera of myxobacteria have been recognized as harbouring potent anticancer activity. Several analogs of these anticancer compounds have been prepared to address the limitations such as, poor solubility, high toxicity and low production yield, in order to obtain the compounds in higher quantities with better pharmacological properties and target selectivity. For example, a semi-synthetic derivative of epothilone obtained from a strain of myxobacterium has been approved for clinical use against taxane-resistant breast cancer. The anticancer compounds from myxobacteria target microtubules, the cytoskeleton, vacuolar ATPase, methionine aminopeptidase, exportin, the proteasome or translation elongation factor to exert anticancer activity. The focus of this review is on the promising anticancer compounds produced by myxobacteria, their targets and their mechanisms of action in cancer cells.</p>","PeriodicalId":7934,"journal":{"name":"Anti-cancer agents in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anticancer Compounds from Myxobacteria: Current Scenario and Future Perspectives.\",\"authors\":\"Swati Sihag, Shweta Sinha, Ramandeep Kaur\",\"doi\":\"10.2174/0118715206384510250625004749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Natural products and their derivatives have played a dominant role in the development of therapeutic agents. Traditionally, most of the natural products developed for the effective treatment of different diseases have been sourced from plants. Natural product discovery has seen a shift of focus towards microorganisms due to the chemical diversity of bioactive products they synthesize. Myxobacteria produce a large variety of novel chemical entities with diverse structures and varied bioactivities. In the last few decades, secondary metabolites from different genera of myxobacteria have been recognized as harbouring potent anticancer activity. Several analogs of these anticancer compounds have been prepared to address the limitations such as, poor solubility, high toxicity and low production yield, in order to obtain the compounds in higher quantities with better pharmacological properties and target selectivity. For example, a semi-synthetic derivative of epothilone obtained from a strain of myxobacterium has been approved for clinical use against taxane-resistant breast cancer. The anticancer compounds from myxobacteria target microtubules, the cytoskeleton, vacuolar ATPase, methionine aminopeptidase, exportin, the proteasome or translation elongation factor to exert anticancer activity. The focus of this review is on the promising anticancer compounds produced by myxobacteria, their targets and their mechanisms of action in cancer cells.</p>\",\"PeriodicalId\":7934,\"journal\":{\"name\":\"Anti-cancer agents in medicinal chemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anti-cancer agents in medicinal chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0118715206384510250625004749\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anti-cancer agents in medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0118715206384510250625004749","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Anticancer Compounds from Myxobacteria: Current Scenario and Future Perspectives.
Natural products and their derivatives have played a dominant role in the development of therapeutic agents. Traditionally, most of the natural products developed for the effective treatment of different diseases have been sourced from plants. Natural product discovery has seen a shift of focus towards microorganisms due to the chemical diversity of bioactive products they synthesize. Myxobacteria produce a large variety of novel chemical entities with diverse structures and varied bioactivities. In the last few decades, secondary metabolites from different genera of myxobacteria have been recognized as harbouring potent anticancer activity. Several analogs of these anticancer compounds have been prepared to address the limitations such as, poor solubility, high toxicity and low production yield, in order to obtain the compounds in higher quantities with better pharmacological properties and target selectivity. For example, a semi-synthetic derivative of epothilone obtained from a strain of myxobacterium has been approved for clinical use against taxane-resistant breast cancer. The anticancer compounds from myxobacteria target microtubules, the cytoskeleton, vacuolar ATPase, methionine aminopeptidase, exportin, the proteasome or translation elongation factor to exert anticancer activity. The focus of this review is on the promising anticancer compounds produced by myxobacteria, their targets and their mechanisms of action in cancer cells.
期刊介绍:
Formerly: Current Medicinal Chemistry - Anti-Cancer Agents.
Anti-Cancer Agents in Medicinal Chemistry aims to cover all the latest and outstanding developments in medicinal chemistry and rational drug design for the discovery of anti-cancer agents.
Each issue contains a series of timely in-depth reviews and guest edited issues written by leaders in the field covering a range of current topics in cancer medicinal chemistry. The journal only considers high quality research papers for publication.
Anti-Cancer Agents in Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments in cancer drug discovery.