American journal of physiology. Gastrointestinal and liver physiology最新文献

筛选
英文 中文
Animal models with characteristics of irritable bowel syndrome with diarrhea: current applications and future perspectives. 具有肠易激综合征腹泻特征的动物模型:当前应用和未来展望。
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-09-01 Epub Date: 2024-07-16 DOI: 10.1152/ajpgi.00060.2024
Jinfeng Chen, Tingting Zhang, Yang Liu, Xueqian Dong, Jianjun Liu
{"title":"Animal models with characteristics of irritable bowel syndrome with diarrhea: current applications and future perspectives.","authors":"Jinfeng Chen, Tingting Zhang, Yang Liu, Xueqian Dong, Jianjun Liu","doi":"10.1152/ajpgi.00060.2024","DOIUrl":"10.1152/ajpgi.00060.2024","url":null,"abstract":"<p><p>Irritable bowel syndrome with diarrhea (IBS-D) is a common intestinal condition that significantly impacts work efficiency and quality of life. The use of animal models is crucial for delving into the pathophysiology of IBS-D and exploring therapeutic options. However, a wide variety of animal models for IBS-D has been used in previous studies, posing a considerable challenge for researchers in selecting a suitable model. In this review, using the Web of Science database, we searched IBS-D-related research spanning from 2014 to 2023; described the differences in animal strains and modeling methods among various IBS-D features recapitulating models; summarized the frequency of model usage, pathogenesis, and pathological characteristics of these models; and discussed their current applications, limitations, and future perspectives. The objective is to offer theoretical guidance for future researchers, aiding them in choosing suitable animal models based on their experimental designs.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G360-G378"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing the degree of hepatic ischemia-reperfusion injury using physiologically based pharmacokinetic modeling of sodium fluorescein disposition in ex vivo machine-perfused livers. 利用荧光素钠在体外机器灌注肝脏中处置的 PBPK 模型评估肝脏缺血再灌注损伤的程度。
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-09-01 Epub Date: 2024-06-25 DOI: 10.1152/ajpgi.00048.2024
Christopher E Monti, Seung-Keun Hong, Said H Audi, Whayoung Lee, Amit Joshi, Scott S Terhune, Joohyun Kim, Ranjan K Dash
{"title":"Assessing the degree of hepatic ischemia-reperfusion injury using physiologically based pharmacokinetic modeling of sodium fluorescein disposition in ex vivo machine-perfused livers.","authors":"Christopher E Monti, Seung-Keun Hong, Said H Audi, Whayoung Lee, Amit Joshi, Scott S Terhune, Joohyun Kim, Ranjan K Dash","doi":"10.1152/ajpgi.00048.2024","DOIUrl":"10.1152/ajpgi.00048.2024","url":null,"abstract":"<p><p>Ischemia-reperfusion injury (IRI) is an intrinsic risk associated with liver transplantation. Ex vivo hepatic machine perfusion (MP) is an emerging organ preservation technique that can mitigate IRI, especially in livers subjected to prolonged warm ischemia time (WIT). However, a method to quantify the biological response to WIT during MP has not been established. Previous studies used physiologically based pharmacokinetic (PBPK) modeling to demonstrate that a decrease in hepatic transport and biliary excretion of the tracer molecule sodium fluorescein (SF) could correlate with increasing WIT in situ. Furthermore, these studies proposed intracellular sequestration of the hepatocyte canalicular membrane transporter multidrug resistance-associated protein 2 (MRP2) leading to decreased MRP2 activity (maximal transport velocity; <i>V</i><sub>max</sub>) as the potential mechanism for decreased biliary SF excretion. We adapted an extant PBPK model to account for ex vivo hepatic MP and fit a six-parameter version of this model to control time-course measurements of SF in MP perfusate and bile. We then identified parameters whose values were likely insensitive to changes in WIT and fixed them to generate a reduced model with only three unknown parameters. Finally, we fit the reduced model to each individual biological replicate SF time course with differing WIT, found the mean estimated value for each parameter, and compared them using a one-way ANOVA. We demonstrated that there was a significant decrease in the estimated value of <i>V</i><sub>max</sub> for MRP2 at the 30-min WIT. These studies provide the foundation for future studies investigating real-time assessment of liver viability during ex vivo MP.<b>NEW & NOTEWORTHY</b> We developed a computational model of sodium fluorescein (SF) biliary excretion in ex vivo machine perfusion and used this model to assess changes in model parameters associated with the activity of MRP2, a hepatocyte membrane transporter, in response to increasing warm ischemia time. We found a significant decrease in the parameter value describing MRP2 activity, consistent with a role of decreased MRP2 function in ischemia-reperfusion injury leading to decreased secretion of SF into bile.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G424-G437"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the diagnostic yield of esophageal manometry using distension-contraction plots of peristalsis and artificial intelligence. 利用蠕动扩张收缩图和人工智能提高食管测压的诊断率
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-09-01 Epub Date: 2024-07-02 DOI: 10.1152/ajpgi.00139.2024
Ali Zifan, Ji Min Lee, Ravinder K Mittal
{"title":"Enhancing the diagnostic yield of esophageal manometry using distension-contraction plots of peristalsis and artificial intelligence.","authors":"Ali Zifan, Ji Min Lee, Ravinder K Mittal","doi":"10.1152/ajpgi.00139.2024","DOIUrl":"10.1152/ajpgi.00139.2024","url":null,"abstract":"<p><p>Our prior study reveals that the distension-contraction profiles using high-resolution manometry impedance recordings can distinguish patients with dysphagia symptom but normal esophageal function testing (\"functional dysphagia\") from control subjects. The aim of this study was to determine the diagnostic value of the recording protocol used in our prior studies (10-mL swallows with subjects in the Trendelenburg position) against the standard clinical protocol (5-mL swallows with subjects in the supine position). We used advanced machine learning techniques and robust metrics for classification purposes. Studies were performed on 30 healthy subjects and 30 patients with functional dysphagia. A custom-built software was used to extract the relevant distension-contraction features of esophageal peristalsis. Ensemble methods, i.e., gradient boost, support vector machines (SVMs), and logit boost, were used as the primary machine learning algorithms. Although the individual contraction features were marginally different between the two groups, the distension features of peristalsis were significantly different. The receiver operating characteristic (ROC) curve values for the standard recording protocol and the distension features ranged from 0.74 to 0.82; they were significantly better for the protocol used in our prior studies, ranging from 0.81 to 0.91. The ROC curve values using three machine learning algorithms were far superior for the distension than the contraction features of esophageal peristalsis, revealing a value of 0.95 for the SVM algorithm. Current patient classification for esophageal motility disorders, based on the contraction phase of peristalsis, ignores a large number of patients who have an abnormality in the distension phase of peristalsis. Distension-contraction plots should be the standard for assessing esophageal peristalsis in clinical practice.<b>NEW & NOTEWORTHY</b> Our findings underscore the superiority of distension features over contraction metrics in diagnosing esophageal dysfunctions. By leveraging state-of-the-art machine learning techniques, our study highlights the diagnostic potential of distension-contraction plots of peristalsis. Implementation of these plots could significantly enhance the accuracy of identifying patients with esophageal motor disorders, advocating for their adoption as the standard in clinical practice.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G405-G413"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427102/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141490602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Colonocyte keratins stabilize mitochondria and contribute to mitochondrial energy metabolism. 结肠细胞角蛋白能稳定线粒体,促进线粒体能量代谢。
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-09-01 Epub Date: 2024-06-11 DOI: 10.1152/ajpgi.00220.2023
Joel H Nyström, Taina R H Heikkilä, Keshav Thapa, Ilari Pulli, Kid Törnquist, Diana M Toivola
{"title":"Colonocyte keratins stabilize mitochondria and contribute to mitochondrial energy metabolism.","authors":"Joel H Nyström, Taina R H Heikkilä, Keshav Thapa, Ilari Pulli, Kid Törnquist, Diana M Toivola","doi":"10.1152/ajpgi.00220.2023","DOIUrl":"10.1152/ajpgi.00220.2023","url":null,"abstract":"<p><p>Keratin intermediate filaments form dynamic filamentous networks, which provide mechanical stability, scaffolding, and protection against stress to epithelial cells. Keratins and other intermediate filaments have been increasingly linked to the regulation of mitochondrial function and homeostasis in different tissues and cell types. While deletion of keratin 8 (K8<sup>-/-</sup>) in mouse colon elicits a colitis-like phenotype, epithelial hyperproliferation, and blunted mitochondrial ketogenesis, the role of K8 in colonocyte mitochondrial function and energy metabolism is unknown. We used two K8 knockout mouse models and CRISPR/Cas9 K8<sup>-/-</sup> colorectal adenocarcinoma Caco-2 cells to answer this question. The results show that K8<sup>-/-</sup> colonocyte mitochondria in vivo are smaller and rounder and that mitochondrial motility is increased in K8<sup>-/-</sup> Caco-2 cells. Furthermore, K8<sup>-/-</sup> Caco-2 cells displayed diminished mitochondrial respiration and decreased mitochondrial membrane potential compared with controls, whereas glycolysis was not affected. The levels of mitochondrial respiratory chain complex proteins and mitochondrial regulatory proteins mitofusin-2 and prohibitin were decreased both in vitro in K8<sup>-/-</sup> Caco-2 cells and in vivo in K8<sup>-/-</sup> mouse colonocytes, and reexpression of K8 into K8<sup>-/-</sup> Caco-2 cells normalizes the mitofusin-2 levels. Mitochondrial Ca<sup>2+</sup> is an important regulator of mitochondrial energy metabolism and homeostasis, and Caco-2 cells lacking K8 displayed decreased levels and altered dynamics of mitochondrial matrix and cytoplasmic Ca<sup>2+</sup>. In summary, these novel findings attribute an important role for colonocyte K8 in stabilizing mitochondrial shape and movement and maintaining mitochondrial respiration and Ca<sup>2+</sup> signaling. Further, how these metabolically compromised colonocytes are capable of hyperproliferating presents an intriguing question for future studies.<b>NEW & NOTEWORTHY</b> In this study, we show that colonocyte intermediate filament protein keratin 8 is important for stabilizing mitochondria and maintaining mitochondrial energy metabolism, as keratin 8-deficient colonocytes display smaller, rounder, and more motile mitochondria, diminished mitochondrial respiration, and altered Ca<sup>2+</sup> dynamics. Changes in fusion-regulating proteins are rescued with reexpression of keratin 8. These alterations in colonocyte mitochondrial homeostasis contribute to keratin 8-associated colitis pathophysiology.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G438-G453"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427106/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299832","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction for Glaser et al., volume 290, 2006, p. G813-G826. Glaser等人的撤稿,第290卷,2006年,第G813-G826页。
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-09-01 DOI: 10.1152/ajpgi.00306.2005_RET
{"title":"Retraction for Glaser et al., volume 290, 2006, p. G813-G826.","authors":"","doi":"10.1152/ajpgi.00306.2005_RET","DOIUrl":"10.1152/ajpgi.00306.2005_RET","url":null,"abstract":"","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":"327 3","pages":"G482"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modulation of intracellular calcium activity in interstitial cells of Cajal by inhibitory neural pathways within the internal anal sphincter. 肛门内括约肌的抑制性神经通路对 Cajal 间质细胞细胞内钙活性的调节。
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-09-01 Epub Date: 2024-06-11 DOI: 10.1152/ajpgi.00309.2023
Karen I Hannigan, Emer P Ni Bhraonain, Thomas W Gould, Kathleen D Keef, Caroline A Cobine
{"title":"Modulation of intracellular calcium activity in interstitial cells of Cajal by inhibitory neural pathways within the internal anal sphincter.","authors":"Karen I Hannigan, Emer P Ni Bhraonain, Thomas W Gould, Kathleen D Keef, Caroline A Cobine","doi":"10.1152/ajpgi.00309.2023","DOIUrl":"10.1152/ajpgi.00309.2023","url":null,"abstract":"<p><p>The internal anal sphincter (IAS) functions to maintain continence. Previous studies utilizing mice with cell-specific expression of GCaMP6f revealed two distinct subtypes of intramuscular interstitial cells of Cajal (ICC-IM) with differing Ca<sup>2+</sup> activities in the IAS. The present study further examined Ca<sup>2+</sup> activity in ICC-IM and its modulation by inhibitory neurotransmission. The spatiotemporal properties of Ca<sup>2+</sup> transients in Type II ICC-IM mimicked those of smooth muscle cells (SMCs), indicating their joint participation in the \"SIP\" syncytium. Electrical field stimulation (EFS; atropine present) abolished localized and whole cell Ca<sup>2+</sup> transients in Type I and II ICC-IM. The purinergic antagonist MRS2500 did not abolish EFS responses in either cell type, whereas the nitric oxide synthase (NOS) inhibitor <i>N</i><sup>G</sup>-nitro-l-arginine (l-NNA) abolished responses in Type I but not Type II ICC-IM. Combined antagonists abolished EFS responses in Type II ICC-IM. In both ICC-IM subtypes, the ability of EFS to inhibit Ca<sup>2+</sup> release was abolished by l-NNA but not MRS2500, suggesting that the nitrergic pathway directly inhibits ICC-IM by blocking Ca<sup>2+</sup> release from intracellular stores. Since inositol (1,4,5)-trisphosphate receptor-associated cGMP kinase substrate I (IRAG1) is expressed in ICC-IM, it is possible that it participates in the inhibition of Ca<sup>2+</sup> release by nitric oxide. Platelet-derived growth factor receptor α (PDGFRα)<sup>+</sup> cells but not ICC-IM expressed P2Y<sub>1</sub> receptors (P2Y<sub>1</sub>R) and small-conductance Ca<sup>2+</sup>-activated K<sup>+</sup> channels (SK3), suggesting that the purinergic pathway indirectly blocks whole cell Ca<sup>2+</sup> transients in Type II ICC-IM via PDGFRα<sup>+</sup> cells. This study provides the first direct evidence for functional coupling between inhibitory motor neurons and ICC-IM subtypes in the IAS, with contractile inhibition ultimately dependent upon electrical coupling between SMCs, ICC, and PDGFRα<sup>+</sup> cells via the SIP syncytium.<b>NEW & NOTEWORTHY</b> Two intramuscular interstitial cells of Cajal (ICC-IM) subtypes exist within the internal anal sphincter (IAS). This study provides the first evidence for direct coupling between nitrergic motor neurons and both ICC-IM subtypes as well as indirect coupling between purinergic inputs and Type II ICC-IM. The spatiotemporal properties of whole cell Ca<sup>2+</sup> transients in Type II ICC-IM mimic those of smooth muscle cells (SMCs), suggesting that ICC-IM modulate the activity of SMCs via their joint participation in a SIP syncytium (SMCs, ICC, and PDGFRα<sup>+</sup> cells).</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G382-G404"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11427099/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141299835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
BTB and CNC homology 1 deficiency disrupts intestinal IgA secretion through regulation of polymeric immunoglobulin receptor expression. BTB 和 CNC 同源体 1 缺乏症会通过调节聚合免疫球蛋白受体的表达破坏肠道 IgA 分泌。
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-09-01 Epub Date: 2024-07-09 DOI: 10.1152/ajpgi.00215.2023
Riku Hamada, Akari Yonezawa, Kenji Matsumoto, Takakazu Mitani, Tomohisa Takagi, Akihiko Muto, Kazuhiko Igarashi, Yuji Naito, Yasuki Higashimura
{"title":"BTB and CNC homology 1 deficiency disrupts intestinal IgA secretion through regulation of polymeric immunoglobulin receptor expression.","authors":"Riku Hamada, Akari Yonezawa, Kenji Matsumoto, Takakazu Mitani, Tomohisa Takagi, Akihiko Muto, Kazuhiko Igarashi, Yuji Naito, Yasuki Higashimura","doi":"10.1152/ajpgi.00215.2023","DOIUrl":"10.1152/ajpgi.00215.2023","url":null,"abstract":"<p><p>Immunoglobulin A (IgA)-mediated mucosal immunity is important for the host because it contributes to reducing infection risk and to establishing host-microbe symbiosis. BTB and CNC homology 1 (Bach1) is a transcriptional repressor with physiological and pathophysiological functions that are of particular interest for their relation to gastrointestinal diseases. However, Bach1 effects on IgA-mediated mucosal immunity remain unknown. For this study using Bach1-deficient (<i>Bach1</i><sup>-/-</sup>) mice, we investigated the function of Bach1 in IgA-mediated mucosal immunity. Intestinal mucosa, feces, and plasma IgA were examined using immunosorbent assay. After cell suspensions were prepared from Peyer's patches and colonic lamina propria, they were examined using flow cytometry. The expression level of polymeric immunoglobulin receptor (pIgR), which plays an important role in the transepithelial transport of IgA, was evaluated using Western blotting, quantitative real-time PCR, and immunohistochemistry. Although no changes in the proportions of IgA-producing cells were observed, the amounts of IgA in the intestinal mucosa were increased in <i>Bach1</i><sup>-/-</sup> mice. Furthermore, plasma IgA was increased in <i>Bach1</i><sup>-/-</sup> mice, but fecal IgA was decreased, indicating that <i>Bach1</i><sup>-/-</sup> mice have abnormal secretion of IgA into the intestinal lumen. In fact, Bach1 deficiency reduced pIgR expression in colonic mucosa at both the protein and mRNA levels. In the human intestinal epithelial cell line LS174T, suppression of Bach1 reduced <i>pIgR</i> mRNA stability. In contrast, the overexpression of Bach1 increased <i>pIgR</i> mRNA stability. These results demonstrate that Bach1 deficiency causes abnormal secretion of IgA into the intestinal lumen via suppression of pIgR expression.<b>NEW & NOTEWORTHY</b> The transcriptional repressor Bach1 has been implicated in diverse intestinal functions, but the effects of Bach1 on IgA-mediated mucosal immunity remain unclear. We demonstrate here that Bach1 deficiency causes abnormal secretion of IgA into the intestinal lumen, although the proportions of IgA-producing cells were not altered. Furthermore, Bach1 regulates the expression of pIgR, which plays an important role in the transepithelial transport of IgA, at the posttranscriptional level.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G414-G423"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141562440","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulsed-field ablation: an alternative ablative method for gastric electrophysiological intervention. 脉冲场消融:胃电生理干预的另一种消融方法。
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-09-01 Epub Date: 2024-07-16 DOI: 10.1152/ajpgi.00124.2024
Ashton Matthee, Zahra Aghababaie, Linley A Nisbet, Jarrah M Dowrick, John A Windsor, Gregory B Sands, Timothy R Angeli-Gordon
{"title":"Pulsed-field ablation: an alternative ablative method for gastric electrophysiological intervention.","authors":"Ashton Matthee, Zahra Aghababaie, Linley A Nisbet, Jarrah M Dowrick, John A Windsor, Gregory B Sands, Timothy R Angeli-Gordon","doi":"10.1152/ajpgi.00124.2024","DOIUrl":"10.1152/ajpgi.00124.2024","url":null,"abstract":"<p><p>Pulsed-field ablation (PFA) is an emerging ablative technology that has been used successfully to eliminate cardiac arrhythmias. As a nonthermal technique, it has significant benefits over traditional radiofrequency ablation with improved target tissue specificity and reduced risk of adverse events during cardiac applications. We investigated whether PFA is safe for use in the stomach and whether it could modulate gastric slow waves. Female weaner pigs were fasted overnight before anesthesia was induced using tiletamine hydrochloride (50 mg·mL<sup>-1</sup>) and zolazepam hydrochloride (50 mg·mL<sup>-1</sup>) and maintained with propofol (Diprivan 2%, 0.2-0.4 mg·kg<sup>-1</sup>·min<sup>-1</sup>). Pulsed-field ablation was performed on their gastric serosa in vivo. Adjacent point lesions (<i>n</i> = 2-4) were used to create a linear injury using bipolar pulsed-field ablation consisting of 40 pulses (10 Hz frequency, 0.1 ms pulse width, 1,000 V amplitude). High-resolution electrical mapping defined baseline and postablation gastric slow-wave patterns. A validated five-point scale was used to evaluate tissue damage in hematoxylin and eosin-stained images. Results indicated that PFA successfully induced complete conduction blocks in all cases, with lesions through the entire thickness of the gastric muscle layers. Consistent postablation slow-wave patterns emerged immediately following ablation and persisted over the study period. Pulsed-field ablation induces rapid conduction blocks as a tool to modulate slow-wave patterns, indicating it may be suitable as an alternative to radiofrequency ablation.<b>NEW & NOTEWORTHY</b> Results show that pulsed-field ablation can serve as a gastric slow-wave intervention by preventing slow-wave propagation across the lesion site. Stable conduction blocks were established immediately following energy delivery, faster than previous examples of radiofrequency gastric ablation. Pulsed-field ablation may be an alternative for gastric slow-wave intervention, and further functional and posthealing studies are now warranted.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G456-G465"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141619095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial focus: will the EGG finally hatch? 编辑聚焦:EGG 最终会孵化吗?
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-09-01 Epub Date: 2024-07-23 DOI: 10.1152/ajpgi.00169.2024
André J P M Smout, Ryan J Jalleh, Karen L Jones, Michael Horowitz
{"title":"Editorial focus: will the EGG finally hatch?","authors":"André J P M Smout, Ryan J Jalleh, Karen L Jones, Michael Horowitz","doi":"10.1152/ajpgi.00169.2024","DOIUrl":"10.1152/ajpgi.00169.2024","url":null,"abstract":"","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G379-G381"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141747165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retraction for Glaser et al., volume 295, 2008, G124-G136. 撤回 Glaser 等人的文章,第 295 卷,2008 年,G124-G136。
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-09-01 DOI: 10.1152/ajpgi.00536.2007_RET
{"title":"Retraction for Glaser et al., volume 295, 2008, G124-G136.","authors":"","doi":"10.1152/ajpgi.00536.2007_RET","DOIUrl":"10.1152/ajpgi.00536.2007_RET","url":null,"abstract":"","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":"327 3","pages":"G481"},"PeriodicalIF":3.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142103605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信