American journal of physiology. Gastrointestinal and liver physiology最新文献

筛选
英文 中文
Large animal models enhance the study of crypt-mediated epithelial recovery from prolonged intestinal ischemia reperfusion injury. 大型动物模型有助于研究隐窝介导的上皮细胞从长期肠道缺血再灌注损伤中恢复。
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-12-01 Epub Date: 2024-10-15 DOI: 10.1152/ajpgi.00236.2024
Caroline A McKinney-Aguirre, Cecilia R Schaaf, Elizabeth Goya-Jorge, John M Freund, Liara M Gonzalez
{"title":"Large animal models enhance the study of crypt-mediated epithelial recovery from prolonged intestinal ischemia reperfusion injury.","authors":"Caroline A McKinney-Aguirre, Cecilia R Schaaf, Elizabeth Goya-Jorge, John M Freund, Liara M Gonzalez","doi":"10.1152/ajpgi.00236.2024","DOIUrl":"10.1152/ajpgi.00236.2024","url":null,"abstract":"<p><p>Intestinal ischemia and reperfusion injury (IRI) is a deadly and common condition. Death is associated with sepsis due to insufficient epithelial repair, requiring stem cell-driven regeneration, typically beginning 48 h after injury. Animal models are critical to advancing this field. To effectively study epithelial healing, models must survive clinically relevant intestinal ischemic injury extending to the crypt. Although mouse models are indispensable to intestinal research, their application for studying epithelial repair following severe IRI may be limited. Ischemic injury was induced in mouse and porcine jejunum for up to 3 h, with up to 72 h of reperfusion. Histologic damage was scored by Chiu-Park grade, and animal survival was assessed. Findings were compared between species. A mouse IRI literature review was performed to evaluate the purported degree of injury, duration of recovery, and reported survival rates. In mice and pigs, 3 h of ischemia induced severe, reliable injury extending into the crypt. However, at 48 h, mouse survival was only 23.5% compared with 100% survival in pigs. In literature, ischemia was induced for >1 h in only 4 of 102 mouse studies and none to 3 h. Recovery was attempted for 48 h in only six reports. Forty-seven studies reported intestinal crypt injury. Of those that featured histologic intestinal crypt damage, survival rates at 48 h ranged from 10 to 50% (median 30%). Mouse models are not ideal for studying intestinal stem cell-mediated recovery from severe IRI. Alternative large animal models, like pigs, are recommended.<b>NEW & NOTEWORTHY</b> Additional research is needed to improve recovery from severe intestinal ischemia. The selection of the ideal animal model is critical to facilitating this work. Based on our experimentation and literature review, porcine models, with increased translatability and an improved ability to survive both prolonged ischemia and the recovery period, appear to be the most appropriate choice for future studies.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G783-G788"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684884/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of Fabry disease-associated lyso-Gb3 on mouse colonic ion transport and motility. 法布里病相关溶菌酶-Gb3对小鼠结肠离子转运和运动的影响特征。
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-12-01 Epub Date: 2024-10-15 DOI: 10.1152/ajpgi.00220.2024
Cecilia Delprete, Friederike Uhlig, Marco Caprini, Niall P Hyland
{"title":"Characterization of Fabry disease-associated lyso-Gb<sub>3</sub> on mouse colonic ion transport and motility.","authors":"Cecilia Delprete, Friederike Uhlig, Marco Caprini, Niall P Hyland","doi":"10.1152/ajpgi.00220.2024","DOIUrl":"10.1152/ajpgi.00220.2024","url":null,"abstract":"<p><p>Fabry disease (FD) is a rare X-linked lysosomal storage disorder caused by a deficiency in α-galactosidase A leading to the accumulation of globotriaosylceramide (Gb<sub>3</sub>) and subsequent increase in globotriaosylsphingosine (lyso-Gb<sub>3</sub>) in different cells and organs, including the gastrointestinal (GI) tract. GI symptoms represent some of the earliest manifestations of FD and significantly impact quality of life. The origin of these symptoms is complex, and the exact mechanisms remain poorly understood. Here, we sought to determine whether lyso-Gb<sub>3</sub> contributes to the pathophysiology of GI symptoms associated with FD by examining its effects on mouse colonic ion transport and motility ex vivo using Ussing chambers and organ baths, respectively. Lyso-Gb<sub>3</sub> significantly increased colonic baseline short-circuit current (<i>I</i><sub>sc</sub>). This increase in <i>I</i><sub>sc</sub> was insensitive to inhibition of the cystic fibrosis transmembrane conductance regulator and Na-K-Cl cotransporter 1, suggesting that the increase in <i>I</i><sub>sc</sub> is Cl<sup>-</sup> ion independent. This response was also insensitive to inhibition by the neurotoxin, tetrodotoxin. In addition, pretreatment with lyso-Gb<sub>3</sub> did not significantly influence subsequent responses to either veratridine or capsaicin implying that the response to lyso-Gb<sub>3</sub> does not involve the enteric nervous system. In terms of colonic motility, lyso-Gb<sub>3</sub> did not significantly influence colonic tone, spontaneous contractility, or cholinergic-induced contractions. These data suggest that lyso-Gb<sub>3</sub> significantly influences ion transport in mouse colon, but that accumulation of Gb<sub>3</sub> may be a prerequisite for the more pronounced disturbances in GI physiology characteristic of FD.<b>NEW & NOTEWORTHY</b> Fabry disease-associated lyso-Gb<sub>3</sub> significantly influences mouse colonic ion transport in a Cl<sup>-</sup> ion-independent manner.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G810-G817"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rise in plasma bile acids following hypoabsorptive bariatric surgeries predicts beneficial metabolic and homeostatic outcomes in male rats. 低吸收减肥手术后血浆胆汁酸的升高预示着雄性大鼠的代谢和体内平衡将得到改善。
IF 4.3 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-12-01 Epub Date: 2024-10-15 DOI: 10.1152/ajpgi.00289.2023
Paulette Mukorako, Audrey-Anne Lavoie, Jocelyn Trottier, Natacha Lemoine, Laurent Biertho, Stéfane Lebel, Julie Plamondon, André Tchernof, David H St-Pierre, André Marette, Olivier Barbier, Denis Richard
{"title":"Rise in plasma bile acids following hypoabsorptive bariatric surgeries predicts beneficial metabolic and homeostatic outcomes in male rats.","authors":"Paulette Mukorako, Audrey-Anne Lavoie, Jocelyn Trottier, Natacha Lemoine, Laurent Biertho, Stéfane Lebel, Julie Plamondon, André Tchernof, David H St-Pierre, André Marette, Olivier Barbier, Denis Richard","doi":"10.1152/ajpgi.00289.2023","DOIUrl":"10.1152/ajpgi.00289.2023","url":null,"abstract":"<p><p>This study was designed to investigate the effects of three hypoabsorptive bariatric surgeries, namely Roux-en-Y gastric bypass (RYGB), biliopancreatic diversion with duodenal switch (BPD-DS), and single anastomosis duodeno-ileal bypass with sleeve gastrectomy (SADI-S), on bile acids (BAs) and to assess whether the changes in BA plasma levels were associated with the metabolic and homeostatic effects of the surgeries. Male Wistar rats, either fed a high- (HF) or a low-fat (LF) diet, were divided into seven groups: RYGB HF, BPD-DS HF, SADI-S HF, sleeve-gastrectomy (SG) HF, sham-operated (Sham) HF, Sham LF, and Sham HF-pair-weighed to BPD-DS (Sham HF-PW). The rats were treated for 56 days. The results demonstrate the ability of RYGB, BPD-DS, and SADI-S to raise plasma levels of BAs, whose elevations were likely due to changes in gene expression of transporters, enzymes, and receptors in the liver and small intestine. This increase, most notably of the secondary BAs (deoxycholic acid, ursodeoxycholic acid, and lithocholic acid), was negatively associated with body weight gain, fat gain, and fasting insulin levels, and positively with plasma peptide tyrosine-tyrosine (PYY). Plasma BAs also correlated positively with the fecal levels of <i>Clostridium</i>, <i>Sutterella</i>, and <i>Enterobacteriaceae</i> and negatively with Clostridiales_f_g_2, <i>Christensenellaceae</i>, Ruminococcaceae_g_2, <i>Oscillibacter</i>, and <i>Oscillospira</i>. In addition, they are associated positively with the short-chain fatty acid (SCFA) levels of propionate, butyrate, isobutyrate, valerate, and isovalerate. Altogether, the present study emphasizes the ability of RYGB, BPD-DS, and SADI-S to induce circulating BA elevations that predict the beneficial consequences of those hypoabsorptive bariatric surgeries on energy and glucose homeostasis and circulating levels of PYY. The present results also reveal close associations between plasma BAs and SCFAs, whose variations following hypoabsorptive surgeries are linked to significant fat losses and metabolic health improvements.<b>NEW & NOTEWORTHY</b> The study emphasizes the ability of RYGB, BPD-DS, and SADI-S to induce elevated circulating bile acids levels and changes in the gene expression of transporters, enzymes and receptors in the liver and small intestine, predicting positive effects on energy and glucose homeostasis as well as PYY levels. The present results also reveal close associations between plasma BAs and SCFAs, whose variations following hypoabsorptive surgeries are also linked to significant fat losses and metabolic health improvements. These findings provide valuable insights into the mechanisms underlying the positive effects of these surgical interventions.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G832-G846"},"PeriodicalIF":4.3,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456094","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Alterations in cellular metabolic pathway and epithelial cell maturation induced by MYO5B defects are partially reversible by LPAR5 activation. MYO5B缺陷诱导的细胞代谢途径和上皮细胞成熟的改变可通过激活LPAR5部分逆转。
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-12-01 Epub Date: 2024-10-15 DOI: 10.1152/ajpgi.00091.2024
Michael Momoh, Sudiksha Rathan-Kumar, Andreanna Burman, Monica E Brown, Francisca Adeniran, Cynthia Ramos, James R Goldenring, Joseph T Roland, Izumi Kaji
{"title":"Alterations in cellular metabolic pathway and epithelial cell maturation induced by MYO5B defects are partially reversible by LPAR5 activation.","authors":"Michael Momoh, Sudiksha Rathan-Kumar, Andreanna Burman, Monica E Brown, Francisca Adeniran, Cynthia Ramos, James R Goldenring, Joseph T Roland, Izumi Kaji","doi":"10.1152/ajpgi.00091.2024","DOIUrl":"10.1152/ajpgi.00091.2024","url":null,"abstract":"<p><p>Functional loss of the motor protein myosin Vb (MYO5B) induces various defects in intestinal epithelial function and causes a congenital diarrheal disorder, namely, microvillus inclusion disease (MVID). Utilizing the MVID model mice <i>Vil1-Cre<sup>ERT2</sup>;Myo5b<sup>flox/flox</sup></i> (MYO5BΔIEC) and <i>Vil1-Cre<sup>ERT2</sup>;Myo5b<sup>flox/G519R</sup></i> [MYO5B(G519R)], we previously reported that functional MYO5B loss disrupts progenitor cell differentiation and enterocyte maturation that result in villus blunting and deadly malabsorption symptoms. In this study, we determined that both absence and a point mutation of MYO5B impair lipid metabolism and alter mitochondrial structure, which may underlie the progenitor cell malfunction observed in the MVID intestine. Along with a decrease in fatty acid oxidation, the lipogenesis pathway was enhanced in the MYO5BΔIEC small intestine. Consistent with these observations in vivo, RNA sequencing of enteroids generated from the two MVID mouse strains showed similar downregulation of energy metabolic enzymes, including mitochondrial oxidative phosphorylation genes. In our previous studies, we reported that lysophosphatidic acid (LPA) signaling ameliorated epithelial cell defects in MYO5BΔIEC tissues and enteroids. The present study demonstrated that the highly soluble LPA receptor (LPAR)5-preferred agonist Compound-1 improved sodium transporter localization and absorptive function and tuft cell differentiation in patient-modeled MVID animals that carry independent mutations in MYO5B. Body weight loss in male MYO5B(G519R) mice was ameliorated by Compound-1. These observations suggest that Compound-1 treatment has a trophic effect on the intestine with MYO5B functional loss through epithelial cell-autonomous pathways that can accelerate the differentiation of progenitor cells and the maturation of enterocytes. Targeting LPAR5 may represent an effective therapeutic approach for the treatment of MVID symptoms induced by different point mutations in MYO5B.<b>NEW & NOTEWORTHY</b> This study demonstrates the importance of MYO5B for cellular lipid metabolism and mitochondria in intestinal epithelial cells, previously unexplored functions of MYO5B. The alterations may underlie the progenitor cell malfunction observed in microvillus inclusion disease (MVID) intestines. To examine the therapeutic potential of progenitor-targeted treatments, the effects of the LPAR5-preferred agonist Compound-1 were investigated utilizing several MVID model mice and enteroids. Our observations suggest that Compound-1 may provide a therapeutic approach for treating MVID.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G877-G899"},"PeriodicalIF":3.9,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11684887/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142456089","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preferential Neurogenesis of Nitrergic Neurons in the Myenteric Plexus of the DSS-induced Colitis Mouse Colon Causes Colonic Dysmotility in Colitis. DSS诱导的结肠炎小鼠结肠肌丛中硝酸神经元的优先神经发生导致结肠炎中的结肠运动障碍
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-11-27 DOI: 10.1152/ajpgi.00219.2023
Kana Miyata, Takeshi Yamamoto, Ryo Kato, Shusaku Hayashi, Makoto Kadowaki
{"title":"Preferential Neurogenesis of Nitrergic Neurons in the Myenteric Plexus of the DSS-induced Colitis Mouse Colon Causes Colonic Dysmotility in Colitis.","authors":"Kana Miyata, Takeshi Yamamoto, Ryo Kato, Shusaku Hayashi, Makoto Kadowaki","doi":"10.1152/ajpgi.00219.2023","DOIUrl":"https://doi.org/10.1152/ajpgi.00219.2023","url":null,"abstract":"<p><p>The enteric nervous system (ENS) continues to be exposed to various disturbances throughout life, which causes apoptosis in the ENS. Therefore, it is assumed that neurogenesis is induced to maintain the neuronal network in the adult ENS. However, these underlying mechanisms are largely unknown. We aimed to investigate adult neurogenesis in the DSS-induced colitis mouse colon.</p><p><strong>Methods: </strong>male C57BL/6N mice (12-week-old) were administered 2% DSS in their drinking water for 8 days. After DSS treatment, cross-sections and longitudinal muscle and myenteric plexus preparations from the colon were used for immunohistochemistry. The segments of colons were mounted in organ baths and then exposed to a voltage-gated sodium channel activator veratridine.</p><p><strong>Results: </strong>in the motility study, veratridine-induced colonic contractions were significantly suppressed in DSS-induced colitis mice compared to normal mice. Immunohistochemical analyses revealed that the proportion of nitrergic neurons per ganglion was significantly increased in the colons of DSS-induced colitis mice compared to normal mice. Furthermore, the proportion of Sox2 (new-born neuron marker)-positive neurons per ganglion was not significantly different between normal mice and DSS-induced colitis mice, whereas the proportion of Sox2-positive nitrergic neurons to Sox2-positive neurons per ganglion was significantly increased in the colons of DSS-induced colitis mice compared to normal mice. In addition, NOS inhibitor significantly enhanced veratridine-induced colonic contractions in DSS-induced colitis mice compared with normal mice.</p><p><strong>Conclusions: </strong>these findings suggested that colitis caused an imbalance in the enteric neural circuit composed of excitatory neurons and inhibitory neurons in the myenteric plexus of the colon, which resulted in colonic dysmotility.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":""},"PeriodicalIF":3.9,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142724380","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Intraduodenal fecal microbiota transplantation ameliorates gut atrophy and cholestasis in a novel parenteral nutrition piglet model. 十二指肠内粪便微生物群移植可改善新型肠外营养仔猪模型的肠道萎缩和胆汁淤积症
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-11-01 Epub Date: 2024-08-20 DOI: 10.1152/ajpgi.00012.2024
Chandrashekhara Manithody, Christine Denton, Shaurya Mehta, Jasmine Carter, Kento Kurashima, Ashlesha Bagwe, Marzena Swiderska-Syn, Miguel Guzman, Sherri Besmer, Sonali Jain, Matthew McHale, Kamran Qureshi, Mustafa Nazzal, Yasar Caliskan, John Long, Chien-Jung Lin, Chelsea Hutchinson, Aaron C Ericsson, Ajay Kumar Jain
{"title":"Intraduodenal fecal microbiota transplantation ameliorates gut atrophy and cholestasis in a novel parenteral nutrition piglet model.","authors":"Chandrashekhara Manithody, Christine Denton, Shaurya Mehta, Jasmine Carter, Kento Kurashima, Ashlesha Bagwe, Marzena Swiderska-Syn, Miguel Guzman, Sherri Besmer, Sonali Jain, Matthew McHale, Kamran Qureshi, Mustafa Nazzal, Yasar Caliskan, John Long, Chien-Jung Lin, Chelsea Hutchinson, Aaron C Ericsson, Ajay Kumar Jain","doi":"10.1152/ajpgi.00012.2024","DOIUrl":"10.1152/ajpgi.00012.2024","url":null,"abstract":"<p><p>Total parenteral nutrition (TPN) provides lifesaving nutritional support intravenously; however, it is associated with significant side effects. Given gut microbial alterations noted with TPN, we hypothesized that transferring fecal microbiota from healthy controls would restore gut-systemic signaling in TPN and mitigate injury. Using our novel ambulatory model (US Patent: US 63/136,165), 31 piglets were randomly allocated to enteral nutrition (EN), TPN only, TPN + antibiotics (TPN-A), or TPN + intraduodenal fecal microbiota transplant (TPN + FMT) for 14 days. Gut, liver, and serum were assessed through histology, biochemistry, and qPCR. Stool samples underwent 16 s rRNA sequencing. Permutational multivariate analysis of variance, Jaccard, and Bray-Curtis metrics were performed. Significant bilirubin elevation in TPN and TPN-A versus EN (<i>P</i> < 0.0001) was prevented with FMT. IFN-G, TNF-α, IL-β, IL-8, and lipopolysaccharide (LPS) were significantly higher in TPN (<i>P</i> = 0.009, P = 0.001, <i>P</i> = 0.043, <i>P</i> = 0.011, <i>P</i> < 0.0001), with preservation upon FMT. Significant gut atrophy by villous-to-crypt ratio in TPN (<i>P</i> < 0.0001) and TPN-A (<i>P</i> = 0.0001) versus EN was prevented by FMT (<i>P</i> = 0.426 vs. EN). Microbiota profiles using principal coordinate analysis demonstrated significant FMT and EN overlap, with the largest separation in TPN-A followed by TPN, driven primarily by Firmicutes and Fusobacteria. TPN-altered gut barrier was preserved upon FMT; upregulated cholesterol 7 α-hydroxylase and bile salt export pump in TPN and TPN-A and downregulated fibroblast growth factor receptor 4, EGF, farnesoid X receptor, and Takeda G Protein-coupled Receptor 5 (TGR5) versus EN was prevented by FMT. This study provides novel evidence of prevention of gut atrophy, liver injury, and microbial dysbiosis with intraduodenal FMT, challenging current paradigms into TPN injury mechanisms and underscores the importance of gut microbes as prime targets for therapeutics and drug discovery.<b>NEW & NOTEWORTHY</b> Intraduodenal fecal microbiota transplantation presents a novel strategy to mitigate complications associated with total parenteral nutrition (TPN), highlighting gut microbiota as a prime target for therapeutic and diagnostic approaches. These results from a highly translatable model provide hope for TPN side effect mitigation for thousands of chronically TPN-dependent patients.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G640-G654"},"PeriodicalIF":3.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003422","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fecal microbial transplants as investigative tools in cancer. 粪便微生物组转移是癌症研究工具和治疗策略。
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-11-01 Epub Date: 2024-09-20 DOI: 10.1152/ajpgi.00171.2024
Margaret S Bohm, Arvind V Ramesh, Joseph F Pierre, Katherine L Cook, E Angela Murphy, Liza Makowski
{"title":"Fecal microbial transplants as investigative tools in cancer.","authors":"Margaret S Bohm, Arvind V Ramesh, Joseph F Pierre, Katherine L Cook, E Angela Murphy, Liza Makowski","doi":"10.1152/ajpgi.00171.2024","DOIUrl":"10.1152/ajpgi.00171.2024","url":null,"abstract":"<p><p>The gut microbiome plays a critical role in the development, progression, and treatment of cancer. As interest in microbiome-immune-cancer interactions expands, the prevalence of fecal microbial transplant (FMT) models has increased proportionally. However, current literature does not provide adequate details or consistent approaches to allow for necessary rigor and experimental reproducibility. In this review, we evaluate key studies using FMT to investigate the relationship between the gut microbiome and various types of cancer. In addition, we will discuss the common pitfalls of these experiments and methods for improved standardization and validation as the field uses FMT with greater frequency. Finally, this review focuses on the impacts of the gut and extraintestinal microbes, prebiotics, probiotics, and postbiotics in cancer risk and response to therapy across a variety of tumor types.<b>NEW & NOTEWORTHY</b> The microbiome impacts the onset, progression, and therapy response of certain types of cancer. Fecal microbial transplants (FMTs) are an increasingly prevalent tool to test these mechanisms that require standardization by the field.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G711-G726"},"PeriodicalIF":3.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559651/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142279173","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decreased expression of DRA (SLC26A3) by a p38-driven IL-1α response contributes to diarrheal disease following in vivo challenge with Brachyspira spp. p38驱动的IL-1α反应导致DRA (SLC26A3)表达减少,从而导致体内感染 Brachyspira spp后出现腹泻病。
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-11-01 Epub Date: 2024-08-06 DOI: 10.1152/ajpgi.00049.2023
Nitin Challa, Cole B Enns, Brandon A Keith, John C S Harding, Matthew E Loewen
{"title":"Decreased expression of DRA (<i>SLC26A3</i>) by a p38-driven IL-1α response contributes to diarrheal disease following in vivo challenge with <i>Brachyspira</i> spp.","authors":"Nitin Challa, Cole B Enns, Brandon A Keith, John C S Harding, Matthew E Loewen","doi":"10.1152/ajpgi.00049.2023","DOIUrl":"10.1152/ajpgi.00049.2023","url":null,"abstract":"<p><p>In this study, we uncovered the novel mechanism of IL-1α-mediated downregulated in adenoma (DRA) (<i>SLC26A3</i>) downregulation in the context of <i>Brachyspira</i> spp.<i>-</i>induced malabsorptive diarrhea. Experimentally infected pigs with <i>Brachyspira</i> spp. had significantly reduced DRA expression in the colon accompanied by IL-1α upregulation. This response was recapitulated in vitro by exposing Caco-2 cells to either <i>Brachyspira</i> lysate or IL-1α. Both p38 and MAPK-activated protein kinase 2 (MAPKAPK-2 also referred as MK-2) showed an increased phosphorylation after exposure to either. SB203580 application, a p38 inhibitor blocked the MK-2 phosphorylation and attenuated the DRA and IL-1α response to both lysate and IL-1α. Exposure to IL-1 receptor antagonist (IL-1RA) produced a similar response. In addition, exposure of cells to either of these blockers without IL-1α or lysate results in increased DRA and decreased IL-1α expression, revealing that DRA needs IL-1α signaling for basal physiological expression. Dual inhibition with both blockers completely inhibited the effect from IL-1α while significantly attenuating the response from <i>Brachyspira</i> lysate, suggesting a minor contribution from another pathway. Together this demonstrates that <i>Brachyspira</i> activates p38 MAPK signaling driving IL-1α expression, which activates IL-1R1 causing DRA downregulation while also driving upregulation of IL-1α through p38 in a positive feedback mechanism. In conclusion, we elucidated a major pathway involved in DRA downregulation and its role in <i>Brachyspira</i>-induced diarrhea. In addition, these observations will aid in our understanding of other inflammatory and infectious diarrhea conditions.<b>NEW & NOTEWORTHY</b> The diarrheal disease caused by the two infectious spirochete spp. <i>B. hyodysenteriae</i> and <i>B. hampsonii</i> reduced the expression of DRA (<i>SLC26A3</i>), a major Cl<sup>-</sup>/HCO<sup>-</sup><sub>3</sub> exchanger involved in Cl<sup>-</sup> absorption. This is attributed to the upregulation of IL-1α driven by p38 MAPK. This work also describes a potential new mechanism in inflammatory diseases while showing the importance of IL-1α in maintaining DRA levels.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G655-G672"},"PeriodicalIF":3.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892706","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amniotic fluid modifies esophageal epithelium differentiation and inflammatory responses. 羊水改变食管上皮细胞分化和炎症反应
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-11-01 Epub Date: 2024-08-27 DOI: 10.1152/ajpgi.00197.2024
Mark Rochman, Andrea M Klinger, Julie M Caldwell, Yoel Sadovsky, Marc E Rothenberg
{"title":"Amniotic fluid modifies esophageal epithelium differentiation and inflammatory responses.","authors":"Mark Rochman, Andrea M Klinger, Julie M Caldwell, Yoel Sadovsky, Marc E Rothenberg","doi":"10.1152/ajpgi.00197.2024","DOIUrl":"10.1152/ajpgi.00197.2024","url":null,"abstract":"<p><p>The interplay between genetic and environmental factors during pregnancy can predispose to inflammatory diseases postnatally, including eosinophilic esophagitis (EoE), a chronic allergic disease triggered by food. Herein, we examined the effects of amniotic fluid (AF) on esophageal epithelial differentiation and responsiveness to proallergic stimuli. Multiplex analysis of AF revealed the expression of 66 cytokines, whereas five cytokines including IL-4 and thymic stromal lymphopoietin (TSLP) were not detected. Several proinflammatory cytokines including TNFα and IL-12 were highly expressed in the AF from women who underwent preterm birth, whereas EGF was the highest in term birth samples. Exposure of esophageal epithelial cells to AF resulted in transient phosphorylation of ERK1/2 and the transcription of early response genes, highlighting the direct impact of AF on esophageal epithelial cells. In a three-dimensional spheroid model, AF modified the esophageal epithelial differentiation program and enhanced the transcription of IL-13-target genes, including <i>CCL26</i> and <i>CAPN14</i>, which encodes for a major genetic susceptibility locus for eosinophilic esophagitis. Notably, <i>CAPN14</i> exhibited upregulation in spheroids exposed to preterm but not term AF following differentiation. Collectively, our findings call attention to the role of AF as a potential mediator of the intrauterine environment that influences subsequent esophageal disorders.<b>NEW & NOTEWORTHY</b> The interaction between amniotic fluid and the esophageal epithelium during pregnancy modifies esophageal epithelial differentiation and subsequent responsiveness to inflammatory stimuli, including interleukin 13 (IL-13). This interaction may predispose individuals to inflammatory conditions of the esophagus, such as eosinophilic esophagitis (EoE), in later stages of life.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G629-G639"},"PeriodicalIF":3.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559652/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142071830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Feeding intolerance after pediatric cardiac surgery is associated with dysbiosis, barrier dysfunction, and reduced short-chain fatty acids. 小儿心脏手术后的喂养不耐受与菌群失调、屏障功能障碍和短链脂肪酸减少有关。
IF 3.9 3区 医学
American journal of physiology. Gastrointestinal and liver physiology Pub Date : 2024-11-01 Epub Date: 2024-09-03 DOI: 10.1152/ajpgi.00151.2024
Jacob Owens, Haowen Qiu, Cole Knoblich, Lisa Gerjevic, Jacques Izard, Linda Xu, Junghyae Lee, Sai Sundeep Kollala, Daryl J Murry, Jean Jack Riethoven, Jesse A Davidson, Amar B Singh, Ali Ibrahimiye, Laura Ortmann, Jeffrey D Salomon
{"title":"Feeding intolerance after pediatric cardiac surgery is associated with dysbiosis, barrier dysfunction, and reduced short-chain fatty acids.","authors":"Jacob Owens, Haowen Qiu, Cole Knoblich, Lisa Gerjevic, Jacques Izard, Linda Xu, Junghyae Lee, Sai Sundeep Kollala, Daryl J Murry, Jean Jack Riethoven, Jesse A Davidson, Amar B Singh, Ali Ibrahimiye, Laura Ortmann, Jeffrey D Salomon","doi":"10.1152/ajpgi.00151.2024","DOIUrl":"10.1152/ajpgi.00151.2024","url":null,"abstract":"<p><p>Congenital heart disease (CHD) is the most common birth defect, occurring in roughly 40,000 U.S. births annually. Malnutrition and feeding intolerance (FI) in CHD range from 30% to 42% and are associated with longer hospitalization and increased mortality. Cardiopulmonary bypass (CPB) required for surgical repair of CHD induces a systemic inflammatory response worsening intestinal dysbiosis and leading to intestinal epithelial barrier dysfunction (EBD), possibly contributing to postoperative FI. The objective of this study was to determine the relationship of postoperative FI with intestinal microbiome, short-chain fatty acids (SCFAs), and EBD in pediatric CHD after cardiac surgery. This was a prospective study of patients aged 0-15 years undergoing cardiac surgery with CPB. Samples were collected preoperatively and postoperatively to evaluate the gut microbiome, plasma EBD markers, short-chain fatty acids (SCFAs), and plasma cytokines. Clinical data were collected to calculate a FI score and evaluate patient status postoperatively. We enrolled 26 CPB patients and identified FI (<i>n</i> = 13). Patients with FI had unique microbial shifts with the reduced SCFA-producing organisms <i>Rothia</i>, <i>Clostridium innocuum</i>, and <i>Intestinimonas</i>. Patients who developed FI had associated elevations in the plasma EBD markers claudin-2 (<i>P</i> < 0.05), claudin-3 (<i>P</i> < 0.01), and fatty acid binding protein (<i>P</i> < 0.01). Patients with FI had reduced plasma and stool SCFAs. Mediation analysis showed the microbiome functional shift was associated with reductions in stool butyric and propionic acid in patients with FI. In conclusion, we provide novel evidence that intestinal dysbiosis, markers of EBD, and SCFA depletion are associated with FI. These data will help identify mechanisms and therapeutics to improve clinical outcomes following pediatric cardiac surgery.<b>NEW & NOTEWORTHY</b> Feeding intolerance contributes to postoperative morbidity following pediatric cardiac surgery. The intestinal microbiome and milieu play a vital role in gut function. Short-chain fatty acids are gut and cardioprotective metabolites produced by commensal bacteria and help maintain appropriate barrier function. Depletion of these metabolites and barrier dysfunction contribute to postoperative feeding intolerance following cardiac surgery. Identifying mechanistic targets to improve the intestinal milieu with the goal of improved nutrition and clinical outcomes is critical.</p>","PeriodicalId":7725,"journal":{"name":"American journal of physiology. Gastrointestinal and liver physiology","volume":" ","pages":"G685-G696"},"PeriodicalIF":3.9,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11559637/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信