Russian Journal of Nondestructive Testing最新文献

筛选
英文 中文
Determination of Position and Size of Non-Flaws at Albedo Flaw Detection 在反照率缺陷检测中确定非缺陷的位置和大小
IF 0.9 4区 材料科学
Russian Journal of Nondestructive Testing Pub Date : 2024-08-08 DOI: 10.1134/S1061830924601636
E. E. Zhuravskiy, D. S. Belkin, B. I. Kapranov, S. V. Chakhlov
{"title":"Determination of Position and Size of Non-Flaws at Albedo Flaw Detection","authors":"E. E. Zhuravskiy,&nbsp;D. S. Belkin,&nbsp;B. I. Kapranov,&nbsp;S. V. Chakhlov","doi":"10.1134/S1061830924601636","DOIUrl":"10.1134/S1061830924601636","url":null,"abstract":"<p>In this article the methods of determining the position and size of non-flaws in albedo flaw detection are considered. Analytical and numerical solutions of the problem of determining the location of non-flaws on the basis of known parameters of the collimation system are shown. The dependence of the location of the flaw on the parameters of the collimation system is shown. It is proposed to determine not the true size of the flaw, but its equivalent area, similar to ultrasonic flaw detection.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and Classification of Buckwheat Grain by Microfocus Radiography and Hyperspectral Imaging Methods 用微聚焦射线照相法和高光谱成像法对荞麦粒进行识别和分类
IF 0.9 4区 材料科学
Russian Journal of Nondestructive Testing Pub Date : 2024-08-08 DOI: 10.1134/S1061830924601697
Yu. T. Platov, S. L. Beletskii, D. A. Metlenkin, R. A. Platova, A. L. Vereshchagin, V. A. Marin
{"title":"Identification and Classification of Buckwheat Grain by Microfocus Radiography and Hyperspectral Imaging Methods","authors":"Yu. T. Platov,&nbsp;S. L. Beletskii,&nbsp;D. A. Metlenkin,&nbsp;R. A. Platova,&nbsp;A. L. Vereshchagin,&nbsp;V. A. Marin","doi":"10.1134/S1061830924601697","DOIUrl":"10.1134/S1061830924601697","url":null,"abstract":"<p>Classification of buckwheat grains is important because the absence of defective grains is a guarantee of yield and quality. Buckwheat grains were randomly selected from a batch with grains that varied in quality. The identification and classification of buckwheat grains according to the degree of fulfillment was carried out by a combination of microfocus X-ray and hyperspectral image analysis and multivariate analysis techniques. Using microfocus radiography, buckwheat grains were categorized into groups according to the degree of fulfillment. Hyperspectral image of buckwheat grains in the range of 935–1720 nm was acquired using a Specim FX17 camera. Using the polygon selection function, the averaged spectra were obtained and a data matrix of grain samples was generated. The bands of the spectrum contributing most to the grading of the grain samples by the degree of fulfillment were identified using the principal component analysis. The classification model of grading buckwheat grain into groups by the degree of fulfillment was constructed by partial least squares discriminant analysis method. The results showed that hyperspectral image is a potential tool for rapid and accurate identification of buckwheat grains, which can be used in large-scale grain classification and grain quality determination.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Application Progress and Prospect of Defect Detection Technology for Timber Structure Members 木结构构件缺陷检测技术的应用进展与展望
IF 0.9 4区 材料科学
Russian Journal of Nondestructive Testing Pub Date : 2024-08-08 DOI: 10.1134/S1061830924600217
Kai Zhao, Zhedong Ge, Liangliang Huo, Yisheng Gao, Yucheng Zhou, Zhihao Yao
{"title":"Application Progress and Prospect of Defect Detection Technology for Timber Structure Members","authors":"Kai Zhao,&nbsp;Zhedong Ge,&nbsp;Liangliang Huo,&nbsp;Yisheng Gao,&nbsp;Yucheng Zhou,&nbsp;Zhihao Yao","doi":"10.1134/S1061830924600217","DOIUrl":"10.1134/S1061830924600217","url":null,"abstract":"<p>Timber buildings show the exquisite skills of craftsmen in China. Under the influence of nature and human activities, damage and destruction of ancient timber structures lead to the loss of China’s cultural heritage. Therefore, it is particularly important to study the existing defect detection methods of timber members and provide excellent restoration plan for the preservation of timber structures. Defects of timber structure members were found to consist mainly of cracking, decay, insect-attack, bending and pullout of tenons, etc. These defects are the main factors that affect the mechanical properties of timber members and endanger the stability of timber structures. Pilodyn, resistograph, stress wave, radar, ultrasound, X-ray, infrared spectroscopy and piezoelectric transducers are all were studies for detection methods mentioned, which belong to semi-destructive testing and non-destructive testing. In detail, the principle, development status and application cases of wood building detection technology are elaborated to demonstrate the advantages and disadvantages of these technologies in various scenarios. New and feasible detection technology should be developed, and the development direction of damage detection technology for timber structures in the future is put forward.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Laser Ultrasonic High Precision Imaging Method for Internal Defects of Small-Diameter Cylindrical Components 针对小直径圆柱形部件内部缺陷的激光超声波高精度成像方法
IF 0.9 4区 材料科学
Russian Journal of Nondestructive Testing Pub Date : 2024-08-08 DOI: 10.1134/S1061830924600047
Yanjie Zhang, Tianyou Li, Zhihui Xu, Ruipeng Jiang, Yaxing Liu, Wei Wang, Wei Shi, Yunfeng Song
{"title":"Laser Ultrasonic High Precision Imaging Method for Internal Defects of Small-Diameter Cylindrical Components","authors":"Yanjie Zhang,&nbsp;Tianyou Li,&nbsp;Zhihui Xu,&nbsp;Ruipeng Jiang,&nbsp;Yaxing Liu,&nbsp;Wei Wang,&nbsp;Wei Shi,&nbsp;Yunfeng Song","doi":"10.1134/S1061830924600047","DOIUrl":"10.1134/S1061830924600047","url":null,"abstract":"<p>An improved frequency-domain synthetic aperture focusing technique (F-SAFT) for laser ultrasonic testing (LUT) is proposed for internal defect detection of small-diameter cylindrical components. Firstly, a LUT automated detection platform is built, a pulsed laser is used to excite ultrasonic waves and a two-wave mixing (TWM) interferometer is used to detect ultrasonic waves. Since ultrasonic signals are affected by the thermal expansion of the pulsed laser, time-frequency analysis is used to obtain the frequency range for imaging longitudinal waves, and the influence of low-frequency clutter is eliminated through multiple filtering. Secondly, in order to balance signal acquisition efficiency and imaging quality, the peak signal-to-noise ratio (PSNR) is used to determine the optimal angular step size. Finally, the equivalent velocity of the longitudinal wave is corrected to compensate for the imaging position error caused by the separation of the ultrasonic excitation point and the detection point. The results show that the method proposed in this paper has high imaging accuracy, which could provide a new approach for in-service non-destructive testing of small-diameter cylindrical components.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141932595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High Precision Ultrasonic Testing Method for Density of Engineering Plastics 工程塑料密度的高精度超声波测试法
IF 0.9 4区 材料科学
Russian Journal of Nondestructive Testing Pub Date : 2024-07-27 DOI: 10.1134/S1061830924600011
Chenggang Li, Lun Wang, Lihong Sun, Zhaojie Chu, Wei Liu, Jiagui Tao
{"title":"High Precision Ultrasonic Testing Method for Density of Engineering Plastics","authors":"Chenggang Li,&nbsp;Lun Wang,&nbsp;Lihong Sun,&nbsp;Zhaojie Chu,&nbsp;Wei Liu,&nbsp;Jiagui Tao","doi":"10.1134/S1061830924600011","DOIUrl":"10.1134/S1061830924600011","url":null,"abstract":"<p>The density of engineering plastics is a key parameter for ensuring their safety and reliability. In order to achieve rapid and high-precision on-site detection, a method based on the acoustic pressure reflection coefficient is proposed. First, finite element simulation analysis was conducted to obtain the acoustic field distribution during ultrasound propagation under water immersion conditions. The correlation between interface echo intensity and material density was determined. Optimal detection parameters were designed to reduce measurement errors caused by beam overlap and diffusion attenuation. A water immersion ultrasonic experimental system was constructed, and the measurement accuracy of the method was tested using chlorinated polyvinyl chloride pipes. The results show that, compared to the measurement results of the Archimedean drainage method, the maximum error of ultrasonic measurements does not exceed 1.7%, and the overall variance is less than 1.2%. The measurement accuracy of this method is compared with the regression results of different machine learning models. It is demonstrated that, compared to regression methods based on variable correlation, this method retains the advantages of high efficiency and low cost in ultrasonic density measurement, while achieving higher measurement accuracy. Additionally, it does not require a dataset for training support, making it promising and valuable for practical applications.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1061830924600011.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141784837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Heat Treatment and Pigment Fraction on the Thermal Conductivity and Dynamic Behavior of Poly (Methyl Methacrylate) Pigmented with Titanium Dioxide 热处理和颜料组分对二氧化钛颜料聚(甲基丙烯酸甲酯)导热性和动态行为的影响
IF 0.9 4区 材料科学
Russian Journal of Nondestructive Testing Pub Date : 2024-07-27 DOI: 10.1134/S1061830923601423
N. Ghebrid, D. Dadache, B. Barka, M. Guellal, F. Rouabah, M. Fois
{"title":"Effect of Heat Treatment and Pigment Fraction on the Thermal Conductivity and Dynamic Behavior of Poly (Methyl Methacrylate) Pigmented with Titanium Dioxide","authors":"N. Ghebrid,&nbsp;D. Dadache,&nbsp;B. Barka,&nbsp;M. Guellal,&nbsp;F. Rouabah,&nbsp;M. Fois","doi":"10.1134/S1061830923601423","DOIUrl":"10.1134/S1061830923601423","url":null,"abstract":"<p>The thermal behavior of a poly(methylmethacrylate) (PMMA) pigmented with titanium dioxide (TiO<sub>2</sub>) is studied in both Steady state and transient regimes in the present work. The numerical results of thermal conductivity, based on the finite element method, are compared to theoretical models and experimental measurements, which varies depending on the quenching temperature and pigment content. Time evolution of temperatures during the quenching of the composite is taken into account for different quenching temperatures and different pigment contents. It is noted that the heat exchange becomes slower for a pigment fraction of 0.5%, and the steady state is reached more rapidly for higher pigment content. The AFM image of the PMMA/TiO<sub>2</sub> composite with content equal to 3% of titanium dioxide. This demonstrates a good distribution of the particles throughout the matrix, with the individual particles being uniformly dispersed and securely embedded in the polymer matrix, thereby avoiding any clustering. An improvement in heat exchange is observed in the composite with a high content of titanium dioxide. This improvement is attributed to the increase in the thermal conductivity of the PMMA/TiO<sub>2</sub> composite.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Visualization of Acoustic Emission Monitoring of Damage Evolution of Reinforced Concrete Beams under Bending 弯曲情况下钢筋混凝土梁损伤演变的声发射可视化监测
IF 0.9 4区 材料科学
Russian Journal of Nondestructive Testing Pub Date : 2024-07-27 DOI: 10.1134/S1061830923601307
Ye Tian, Xudong Chen, Xin Shi, Bin Li, Yingjie Ning
{"title":"Visualization of Acoustic Emission Monitoring of Damage Evolution of Reinforced Concrete Beams under Bending","authors":"Ye Tian,&nbsp;Xudong Chen,&nbsp;Xin Shi,&nbsp;Bin Li,&nbsp;Yingjie Ning","doi":"10.1134/S1061830923601307","DOIUrl":"10.1134/S1061830923601307","url":null,"abstract":"<p>Reinforced concrete (RC) structures combine steel and concrete to harness their respective advantages, making them a staple in contemporary architecture. With the aging of civil engineering structures, structural health monitoring grows increasingly critical. In this context, acoustic emission technology (AE) emerges as an effective nondestructive testing method for assessing the structural damage status. Building on this foundation, the AE technology was utilized to monitor the crack growth in the RC beam under the four-point bending test. Furthermore, a visual analysis method to assess the internal damage of the RC beam, based on the spatial <i>b</i> value of the AE, was introduced. This method integrates the spatial <i>b</i> value and the AE event density distributions to develop the <i>T</i> value. The results indicate that as the stirrup ratio decreases, the bearing capacity of RC beams increases; however, their ductility experiences a significant reduction, and the failure mode undergoes a transformation. Throughout each failure stage of RC beams, the AE ringing number and energy exhibit unique and easily distinguishable characteristics of change. Additionally, RA-AF correlation analysis can be applied to delve deeper into the analysis of the RC beams’ failure modes. Utilizing the spatial <i>b</i> value and <i>T</i> value facilitates the identification of damage locations within the RC beam, thereby offering a practical and feasible approach for structural damage analysis.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Applying Data Fusion Procedures to Evaluation of Impact Damage in Carbon Fiber Reinforced Plastic by Using Optical Infrared Thermography and Laser Vibrometry Techniques 利用光学红外热成像和激光测振技术,将数据融合程序应用于碳纤维增强塑料的冲击损伤评估
IF 0.9 4区 材料科学
Russian Journal of Nondestructive Testing Pub Date : 2024-07-27 DOI: 10.1134/S1061830924601685
V. Yu. Shpil’noi, D. A. Derusova, V. P. Vavilov
{"title":"Applying Data Fusion Procedures to Evaluation of Impact Damage in Carbon Fiber Reinforced Plastic by Using Optical Infrared Thermography and Laser Vibrometry Techniques","authors":"V. Yu. Shpil’noi,&nbsp;D. A. Derusova,&nbsp;V. P. Vavilov","doi":"10.1134/S1061830924601685","DOIUrl":"10.1134/S1061830924601685","url":null,"abstract":"<p>This study is devoted to the development of fusion techniques for data obtained by one or several nondestructive testing (NDT) methods. Experimental results were obtained by applying laser vibrometry and optical infrared thermography to evaluation of impact damage to carbon fiber composites. These NDT techniques are different by their physical nature and supply specific testing results. The proposed data fusion method allows increasing the reliability of inspection results and enables estimating defect parameters. It involves both averaging data of each single NDT technique and merging the results obtained by two methods. Vibrograms obtained by laser vibrometry are used to analyze acoustic response of the test sample to stimulation at various frequencies. In turn, infrared thermographic NDT supplies the sample response to thermal stimulation. It has been shown that the fusion of these two techniques supplies a comprehensive information on defect size and location. Also, the automation of the fusion procedure increases NDT productivity and reduces subjectivity of testing results.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141769994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Laser Speckle Imaging as a Nondestructive Method for Tracking the Dynamics in Slow Curing Epoxy Resin 动态激光斑点成像是跟踪慢固化环氧树脂动态的一种无损方法
IF 0.9 4区 材料科学
Russian Journal of Nondestructive Testing Pub Date : 2024-07-27 DOI: 10.1134/S106183092360123X
S. H. Keerthana, A. Mujeeb, P. Radhakrishnan
{"title":"Dynamic Laser Speckle Imaging as a Nondestructive Method for Tracking the Dynamics in Slow Curing Epoxy Resin","authors":"S. H. Keerthana,&nbsp;A. Mujeeb,&nbsp;P. Radhakrishnan","doi":"10.1134/S106183092360123X","DOIUrl":"10.1134/S106183092360123X","url":null,"abstract":"<p>Dynamic laser speckle imaging (DLSI) is an emerging nondestructive optical method used for the characterization of turbid materials. The microscopic dynamics of the turbid materials can be quantified using this imaging technique with high spatio temporal resolution. In recent decades, epoxy resins became indispensable for industries due to its fascinating mechanical properties, high chemical resistance, etc. The physical, mechanical and electrical characteristics of epoxy resins depend on the curing process. However, the techniques for monitoring the microscopic dynamics of the curing process are in-sufficient. Hence this work reports the application of dynamic laser speckle imaging to monitor the curing stages of Araldite, a 2 part epoxy resin. The computational methods incorporated with the technique include cross-correlation, inertia moment, Fujii method, etc. Conventional characterization techniques such as Differential Scanning Calorimetry and Fourier Transform Infrared Spectroscopy were also employed to confirm the results. The experimental results were also confirmed using the theoretical analysis.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141784838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Detection and Evaluation of Dissimilar Metal Weld Defects Based on the Tx-Rx Pulsed Eddy Current Testing Probe 基于 Tx-Rx 脉冲涡流测试探头的异种金属焊接缺陷检测与评估
IF 0.9 4区 材料科学
Russian Journal of Nondestructive Testing Pub Date : 2024-07-27 DOI: 10.1134/S1061830924600096
Jin Wang, Qing Zhang, Chunxiong Ding, Yi Ren, Jianbo Chu, Haitao Wang, Yueming Zhu
{"title":"Detection and Evaluation of Dissimilar Metal Weld Defects Based on the Tx-Rx Pulsed Eddy Current Testing Probe","authors":"Jin Wang,&nbsp;Qing Zhang,&nbsp;Chunxiong Ding,&nbsp;Yi Ren,&nbsp;Jianbo Chu,&nbsp;Haitao Wang,&nbsp;Yueming Zhu","doi":"10.1134/S1061830924600096","DOIUrl":"10.1134/S1061830924600096","url":null,"abstract":"<p>Dissimilar metal welds (DMWs), widely used in many components of nuclear power plants, may cause catastrophic failures because of damages (such as corrosion). Pulsed eddy current testing (PECT) could be used for DMW detection for its advantages of broadband property and high lift-off immunity. However, the research on PECT for DMW detection has seldom been studied because its structure and material are complicated. In this paper, the detection and evaluation of flaws in DMWs are studied based on the transmitter-receiver (Tx-Rx) PECT probe. Simulation and experiment studies show that, for better detection accuracy, the Tx coil of the probe should be located above the pressure vessel, the Rx coil should be located above the weld, and the minimum distance between the Tx and Rx coils is suggested. Moreover, the peak value of the differential signal and the coefficient <i>a</i><sub>1</sub> of the fitted differential signals with a second-order Gaussian function can be used for defect evaluation. The research in this paper is beneficial for DMW detection by using PECT Tx-Rx probes.</p>","PeriodicalId":764,"journal":{"name":"Russian Journal of Nondestructive Testing","volume":null,"pages":null},"PeriodicalIF":0.9,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141784839","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信