{"title":"The Number of Elementary Fermions and the Electromagnetic Coupling","authors":"L. De Caro","doi":"10.3390/particles5040036","DOIUrl":"https://doi.org/10.3390/particles5040036","url":null,"abstract":"Electric charges and masses of elementary fermions of the Standard Model and fundamental physical constants (speed of light in vacuum, Planck constant, gravitational constant, vacuum permittivity, electron charge) are related through a simple equation. This new relation links 10 of the free parameters of the Standard Model—the masses of the three charged leptons and six quarks, and the electromagnetic coupling—in a compact formula, leaving strong constraints for allowing further elementary charged fermions beyond the Standard Model’s physics. The formula is not derived by theoretical calculations, but it is based on the empirically measured values of the electric charges and proper masses of the known elementary fermions.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78257134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Parametrizations of Collinear and kT-Dependent Parton Densities in Proton","authors":"N. Abdulov, A. Kotikov, A. Lipatov","doi":"10.3390/particles5040039","DOIUrl":"https://doi.org/10.3390/particles5040039","url":null,"abstract":"A new type of parametrization for parton distribution functions in the proton, based on their Q2-evolution at large and small x values, is constructed. In our analysis, the valence and nonsinglet parts obey the Gross–Llewellyn–Smith and Gottfried sum rules, respectively. For the singlet quark and gluon densities, momentum conservation is taken into account. Then, using the Kimber–Martin–Ryskin prescription, we extend the consideration to Transverse Momentum Dependent (TMD, or unintegrated) gluon and quark distributions in the proton, which currently plays an important role in a the number of phenomenological applications. The analytical expressions for the latter, valid for both low and large x, are derived for the first time.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75366099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Overlapping Resonances with Unitary Breit–Wigner and K-Matrix Approaches","authors":"V. Henner, T. Belozerova","doi":"10.3390/particles5040035","DOIUrl":"https://doi.org/10.3390/particles5040035","url":null,"abstract":"We compare two methods for obtaining the parameters of overlapping resonances. The convenience of the Breit–Wigner (BW) approach is based on the fact that it operates with the masses and widths of the states. For several resonances with the same quantum numbers, a sum of BW functions violates the unitarity of the S-matrix. However, unitarity can be maintained by introducing interference phases to a BW implementation of scattering matrix formalism. A background can be added to the BW amplitudes in the standard way by using background phases. The K-matrix method is often used to analyze data related to several resonances with the same quantum numbers. It guarantees the unitarity of the S-matrix, but its parameters can be considered as resonance masses and widths only for well-spaced states. It also does not allow the separation of the resonant and background contributions in scattering amplitudes, which is critically important for determining parameters of wide resonances. To demonstrate the features of these methods, we consider several examples using simulated data.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86563312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Invariance of Inelastic Overlap Function","authors":"S. Troshin, N. Tyurin","doi":"10.3390/particles6010013","DOIUrl":"https://doi.org/10.3390/particles6010013","url":null,"abstract":"In this study, we consider the symmetry property of the inelastic overlap function and its relation to the reflective scattering mode appearance. This symmetry property disfavors an exclusion of one of the scattering modes—the reflective mode—when approaching the asymptotic limit. Predominance of the particular mode correlates with the energy and impact parameters ranges.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78943716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electromagnetic Response in an Expanding Quark–Gluon Plasma","authors":"I. Shovkovy","doi":"10.3390/particles5040034","DOIUrl":"https://doi.org/10.3390/particles5040034","url":null,"abstract":"The validity of conventional Ohm’s law is tested in the context of a rapidly evolving quark–gluon plasma produced in heavy-ion collisions. Here, we discuss the electromagnetic response using an analytical solution in kinetic theory. As conjectured previously, after switching on an electric field in a nonexpanding plasma, the time-dependent current is given by J(t)=(1−e−t/τ0)σ0E, where τ0 is the transport relaxation time and σ0 is the steady-state electrical conductivity. Such an incomplete electromagnetic response reduces the efficiency of the magnetic flux trapping in the quark–gluon plasma, and may prevent the observation of the chiral magnetic effect. Here, we extend the study to the case of a rapidly expanding plasma. We find that the decreasing temperature and the increasing transport relaxation time have opposite effects on the electromagnetic response. While the former suppresses the time-dependent conductivity, the latter enhances it.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"117 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79753811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Shock-Induced Mesoparticles and Turbulence Occurrence","authors":"T. Khantuleva, Y. Meshcheryakov","doi":"10.3390/particles5030032","DOIUrl":"https://doi.org/10.3390/particles5030032","url":null,"abstract":"The development of a new approach to describe turbulent motions in condensed matter on the basis of nonlocal modeling of highly non-equilibrium processes in open systems is performed in parallel with an experiment studying the mesostructure of dynamically deformed solids. The shock-induced mesostructure formation inside the propagating waveform registered in real time allows the transient stages of non-equilibrium processes to be qualitatively and quantitatively revealed. A new nonlocal approach, developed on the basis of the nonlocal and retarded transport equations obtained within the non-equilibrium statistical physics, is used to describe the occurrence of turbulence. Within the approach, the reason for the transition to turbulence is that the non-equilibrium spatiotemporal correlation function generates the dynamic structures in the form of finite-size clusters on the mesoscale, with almost identical values of macroscopic densities moving as almost solid particles that can interact and rotate. The fragmentation of spatiotemporal correlations upon impact forms the mesoparticles that move at different speeds and transfer mass, momentum and energy-like wave packets. The movements recorded simultaneously at two scale levels indicate the energy exchange between them. Its description required a redefinition of the concept of energy far from local thermodynamic equilibrium. The experimental results show that the irreversible part of the dynamic mesostructure remains frozen into material as a new defect.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"24 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81720579","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Electron Capture on Nuclei in Stellar Environment","authors":"P. Giannaka, T. Kosmas","doi":"10.3390/particles5030030","DOIUrl":"https://doi.org/10.3390/particles5030030","url":null,"abstract":"The stellar electron capture on nuclei is an essential, semi-leptonic process that is especially significant in the central environment of core-collapse supernovae and in the explosive stellar nucleosynthesis. In this article, on the basis of the original (absolute) electron-capture cross-sections under laboratory conditions that we computed in our previous work for a set of medium-weight nuclear isotopes, we extend this study and evaluate folded e−-capture rates in the stellar environment. With this aim, we assume that the parent nuclei and the projectile electrons interact when they are in the deep stellar interior during the late stages of the evolution of massive stars. Under these conditions (high matter densities and high temperatures of the pre-supernova and core-collapse supernova phases), we choose two categories of nuclei; the first includes the 48Ti and 56Fe isotopes that have A<65 and belong to the iron group of nuclei, and the second includes the heavier and more neutron-rich isotopes 66Zn and 90Zr (with A>65). In the former, the electron capture takes place mostly during the pre-supernova stage, while the latter occurs during the core-collapse supernova phase. A comparison with previous calculations, which were obtained by using various microscopic nuclear models employed for single-charge exchange nuclear reactions, is also included.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85870475","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Original e− Capture Cross Sections for Hot Stellar Interior Energies","authors":"P. Giannaka, T. Kosmas, H. Ejiri","doi":"10.3390/particles5030031","DOIUrl":"https://doi.org/10.3390/particles5030031","url":null,"abstract":"The nuclear electron capture reaction possesses a prominent position among other weak interaction processes occurring in explosive nucleosynthesis, especially at the late stages of evolution of massive stars. In this work, we perform exclusive calculations of absolute e−-capture cross sections using the proton–neutron (pn) quasi-particle random phase approximation. Thus, the results of this study can be used as predictions for experiments operating under the same conditions and in exploring the role of the e−-capture process in the stellar environment at the pre-supernova and supernova phase of a massive star. The main goal of our study is to provide detailed state-by-state calculations of original cross sections for the e−-capture on a set of isotopes around the iron group nuclei (28Si, 32S, 48Ti, 56Fe, 66Zn and 90Zr) that play a significant role in pre-supernova as well as in the core–collapse supernova phase in the energy range 0≤E≤50 MeV.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"10 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83089761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bulk Viscosity of Relativistic npeμ Matter in Neutron-Star Mergers","authors":"M. Alford, A. Harutyunyan, A. Sedrakian","doi":"10.3390/particles5030029","DOIUrl":"https://doi.org/10.3390/particles5030029","url":null,"abstract":"We discuss the bulk viscosity of hot and dense npeμ matter arising from weak-interaction direct Urca processes. We consider two regimes of interest: (a) the neutrino-transparent regime with T≤Ttr (Ttr≃5÷10 MeV is the neutrino-trapping temperature); and (b) the neutrino-trapped regime with T≥Ttr. Nuclear matter is modeled in relativistic density functional approach with density-dependent parametrization DDME2. The maximum of the bulk viscosity is achieved at temperatures T≃5÷6 MeV in the neutrino-transparent regime, then it drops rapidly at higher temperatures where neutrino-trapping occurs. As an astrophysical application, we estimate the damping timescales of density oscillations by the bulk viscosity in neutron star mergers and find that, e.g., at the oscillation frequency f=10 kHz, the damping will be very efficient at temperatures 4≤T≤7 MeV where the bulk viscosity might affect the evolution of the post-merger object.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"89 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80233074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Dexheimer, Marco Mancini, M. Oertel, C. Providência, L. Tolos, S. Typel
{"title":"Quick Guides for Use of the CompOSE Data Base","authors":"V. Dexheimer, Marco Mancini, M. Oertel, C. Providência, L. Tolos, S. Typel","doi":"10.3390/particles5030028","DOIUrl":"https://doi.org/10.3390/particles5030028","url":null,"abstract":"We present a combination of two quick guides aimed at summarizing relevant information about the CompOSE nuclear equation of state repository. The first is aimed at nuclear physicists and describes how to provide standard equation of state tables. The second quick guide is meant for users and describes the basic procedures to obtain customized tables with equation of state data. Several examples are included to help providers and users to understand and benefit from the CompOSE database.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85321505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}