{"title":"Coulomb Force from Non-Local Self-Assembly of Multi-Peak Densities in a Charged Space Continuum","authors":"I. Bulyzhenkov","doi":"10.3390/particles6010007","DOIUrl":"https://doi.org/10.3390/particles6010007","url":null,"abstract":"Maxwell’s electrodynamics admits radial charge densities of the elementary organization with one vertex of the spherical symmetry. A multi-vertex distribution of sharply inhomogeneous charge densities can also be described by monistic field solutions to Maxwell’s equations–equalities. Coulomb–Lorentz forces are exerted locally to correlated electric densities in their volume organization with the fixed self-energy integral. The long-range Coulomb interaction between the dense peaks of the charged space continuum can be described quantitatively through bulk integrals of local tensions within observable bodies in favor of the monistic all-unity in the material space physics of Descartes and Russian cosmists.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"60 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79401899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nucleon Resonance Electroexcitation Amplitudes and Emergent Hadron Mass","authors":"D. Carman, R. Gothe, V. Mokeev, C. Roberts","doi":"10.3390/particles6010023","DOIUrl":"https://doi.org/10.3390/particles6010023","url":null,"abstract":"Understanding the strong interaction dynamics that govern the emergence of hadron mass (EHM) represents a challenging open problem in the Standard Model. In this paper we describe new opportunities for gaining insight into EHM from results on nucleon resonance (N*) electroexcitation amplitudes (i.e., γvpN* electrocouplings) in the mass range up to 1.8 GeV for virtual photon four-momentum squared (i.e., photon virtualities Q2) up to 7.5 GeV2 available from exclusive meson electroproduction data acquired during the 6-GeV era of experiments at Jefferson Laboratory (JLab). These results, combined with achievements in the use of continuum Schwinger function methods (CSMs), offer new opportunities for charting the momentum dependence of the dressed quark mass from results on the Q2-evolution of the γvpN* electrocouplings. This mass function is one of the three pillars of EHM and its behavior expresses influences of the other two, viz. the running gluon mass and momentum-dependent effective charge. A successful description of the Δ(1232)3/2+ and N(1440)1/2+ electrocouplings has been achieved using CSMs with, in both cases, common momentum-dependent mass functions for the dressed quarks, for the gluons, and the same momentum-dependent strong coupling. The properties of these functions have been inferred from nonperturbative studies of QCD and confirmed, e.g., in the description of nucleon and pion elastic electromagnetic form factors. Parameter-free CSM predictions for the electrocouplings of the Δ(1600)3/2+ became available in 2019. The experimental results obtained in the first half of 2022 have confirmed the CSM predictions. We also discuss prospects for these studies during the 12-GeV era at JLab using the CLAS12 detector, with experiments that are currently in progress, and canvass the physics motivation for continued studies in this area with a possible increase of the JLab electron beam energy up to 22 GeV. Such an upgrade would finally enable mapping of the dressed quark mass over the full range of distances (i.e., quark momenta) where the dominant part of hadron mass and N* structure emerge in the transition from the strongly coupled to perturbative QCD regimes.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"9 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87847061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Acknowledgment to the Reviewers of Particles in 2022","authors":"","doi":"10.3390/particles6010006","DOIUrl":"https://doi.org/10.3390/particles6010006","url":null,"abstract":"High-quality academic publishing is built on rigorous peer review [...]","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"34 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76599207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Gauge Sector Dynamics in QCD","authors":"M. N. Ferreira, J. Papavassiliou","doi":"10.3390/particles6010017","DOIUrl":"https://doi.org/10.3390/particles6010017","url":null,"abstract":"The dynamics of the QCD gauge sector give rise to non-perturbative phenomena that are crucial for the internal consistency of the theory; most notably, they account for the generation of a gluon mass through the action of the Schwinger mechanism, the taming of the Landau pole, the ensuing stabilization of the gauge coupling, and the infrared suppression of the three-gluon vertex. In the present work, we review some key advances in the ongoing investigation of this sector within the framework of the continuum Schwinger function methods, supplemented by results obtained from lattice simulations.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87289922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Constraints on Nuclear Symmetry Energy Parameters","authors":"J. Lattimer","doi":"10.3390/particles6010003","DOIUrl":"https://doi.org/10.3390/particles6010003","url":null,"abstract":"A review is made of constraints on the nuclear symmetry energy parameters arising from nuclear binding energy measurements, theoretical chiral effective field predictions of neutron matter properties, the unitary gas conjecture, and measurements of neutron skin thicknesses and dipole polarizabilities. While most studies have been confined to the parameters SV and L, the important roles played by, and constraints on Ksym, or, equivalently, the neutron matter incompressibility KN, are discussed. Strong correlations among SV,L, and KN are found from both nuclear binding energies and neutron matter theory. However, these correlations somewhat differ in the two cases, and those from neutron matter theory have smaller uncertainties. To 68% confidence, it is found from neutron matter theory that SV=32.0±1.1 MeV, L=51.9±7.9 MeV and KN=152.2±38.1 MeV. Theoretical predictions for neutron skin thickness and dipole polarizability measurements of the neutron-rich nuclei 48Ca, 120Sn, and 208Pb are compared to recent experimental measurements, most notably the CREX and PREX neutron skin experiments from Jefferson Laboratory. By themselves, PREX I+II measurements of 208Pb and CREX measurement of 48Ca suggest L=121±47 MeV and L=−5±40 MeV, respectively, to 68% confidence. However, we show that nuclear interactions optimally satisfying both measurements imply L=53±13 MeV, nearly the range suggested by either nuclear mass measurements or neutron matter theory, and is also consistent with nuclear dipole polarizability measurements. This small parameter range implies R1.4=11.6±1.0 km and Λ1.4=228−90+148, which are consistent with NICER X-ray and LIGO/Virgo gravitational wave observations of neutron stars.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"148 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80627862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. B. Luong, D. Idrisov, P. Parfenov, A. Taranenko
{"title":"Elliptic Flow and Its Fluctuations from Transport Models for Au+Au Collisions at sNN = 7.7 and 11.5 GeV","authors":"V. B. Luong, D. Idrisov, P. Parfenov, A. Taranenko","doi":"10.3390/particles6010002","DOIUrl":"https://doi.org/10.3390/particles6010002","url":null,"abstract":"The elliptic flow v2 is one of the key observables sensitive to the transport properties of the strongly interacting matter formed in relativistic heavy-ion collisions. In this work, we report on the calculations of v2 and its fluctuations of charged hadrons produced in Au+Au collisions at center-of-mass energy per nucleon pair sNN = 7.7 and 11.5 GeV from several transport models and provide a direct comparison with published results from the STAR experiment. This study motivates further experimental investigations of v2 and its fluctuations with the Multi-Purpose Detector (MPD) at the NICA Collider.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"7 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89647551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Consistent Theories of Free Dirac Particle without Singular Predictions","authors":"G. Nisticò","doi":"10.3390/particles6010001","DOIUrl":"https://doi.org/10.3390/particles6010001","url":null,"abstract":"Dirac’s theory is not a unique theory consistent with the physical principles specific of a free spin-one-half particle. In fact, we derive classes of theories of an elementary free particle from the principle of Poincaré’s invariance and from the principle of the covariance of the position. The theory of Dirac is just one of these theories, characterized by singular predictions, namely, the zitterbewegung. Yet, the class here derived contains families of consistent theories without singular predictions. For the time being, the experimental verifiability of these alternative theories is restricted to the predictions of free-particle theories for ideal experiments.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76011098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Model Study of the Energy Dependence of Anisotropic Flow in Heavy-Ion Collisions at sNN = 2–4.5 GeV","authors":"P. Parfenov","doi":"10.3390/particles5040040","DOIUrl":"https://doi.org/10.3390/particles5040040","url":null,"abstract":"The anisotropic flow is one of the important observables sensitive to the equation of state (EOS) and transport properties of the strongly interacting matter created in relativistic heavy-ion collisions. In this work, we report a detailed multi-differential study of the directed (v1), elliptic (v2), triangular (v3), and quadrangular (v4) flow coefficients of protons in relativistic heavy-ion collisions at sNN = 2.2–4.5 GeV using several hadronic transport models. Recent published results for Au + Au collisions at sNN = 2.4 GeV from HADES experiment and at sNN = 3.0 GeV from the STAR experiment have been used for comparison. The study motivates further experimental investigations of the anisotropic collective flow of protons and neutrons in a high baryon density region.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"111 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79207926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Formation, Possible Detection and Consequences of Highly Magnetized Compact Stars","authors":"B. Mukhopadhyay, M. Bhattacharya","doi":"10.3390/particles5040037","DOIUrl":"https://doi.org/10.3390/particles5040037","url":null,"abstract":"Over the past several years, there has been enormous interest in massive neutron stars and white dwarfs due to either their direct or indirect evidence. The recent detection of gravitational wave event GW190814 has confirmed the existence of compact stars with masses as high as ∼2.5–2.67 M⊙ within the so-called mass gap, indicating the existence of highly massive neutron stars. One of the primary goals to invoke massive compact objects was to explain the recent detections of over a dozen Type Ia supernovae, whose peculiarity lies with their unusual light curve, in particular the high luminosity and low ejecta velocity. In a series of recent papers, our group has proposed that highly magnetised white dwarfs with super-Chandrasekhar masses can be promising candidates for the progenitors of these peculiar supernovae. The mass-radius relations of these magnetised stars are significantly different from those of their non-magnetised counterparts, which leads to a revised super-Chandrasekhar mass-limit. These compact stars have wider ranging implications, including those for soft gamma-ray repeaters, anomalous X-ray pulsars, white dwarf pulsars and gravitational radiation. Here we review the development of the subject over the last decade or so, describing the overall state of the art of the subject as it stands now. We mainly touch upon the possible formation channels of these intriguing stars as well as the effectiveness of direct detection methods. These magnetised stars can have many interesting consequences, including reconsideration of them as possible standard candles.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"31 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82052532","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Emergence of Hadron Mass and Structure","authors":"M. Ding, C. Roberts, S. Schmidt","doi":"10.3390/particles6010004","DOIUrl":"https://doi.org/10.3390/particles6010004","url":null,"abstract":"Visible matter is characterised by a single mass scale; namely, the proton mass. The proton’s existence and structure are supposed to be described by quantum chromodynamics (QCD); yet, absent Higgs boson couplings, chromodynamics is scale-invariant. Thus, if the Standard Model is truly a part of the theory of Nature, then the proton mass is an emergent feature of QCD; and emergent hadron mass (EHM) must provide the basic link between theory and observation. Nonperturbative tools are necessary if such connections are to be made; and in this context, we sketch recent progress in the application of continuum Schwinger function methods to an array of related problems in hadron and particle physics. Special emphasis is given to the three pillars of EHM—namely, the running gluon mass, process-independent effective charge, and running quark mass; their role in stabilising QCD; and their measurable expressions in a diverse array of observables.","PeriodicalId":75932,"journal":{"name":"Inhaled particles","volume":"28 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84902359","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}