Flynn B. Darby, Michael Y. Hua, Oskari V. Pakari, Shaun D. Clarke, Sara A. Pozzi
{"title":"Multiplicity counting using organic scintillators to distinguish neutron sources: An advanced teaching laboratory","authors":"Flynn B. Darby, Michael Y. Hua, Oskari V. Pakari, Shaun D. Clarke, Sara A. Pozzi","doi":"10.1119/5.0139531","DOIUrl":"https://doi.org/10.1119/5.0139531","url":null,"abstract":"In this advanced instructional laboratory, students explore complex detection systems and nondestructive assay techniques used in the field of nuclear physics. After setting up and calibrating a neutron detection system, students carry out timing and energy deposition analyses of radiation signals. Through the timing of prompt fission neutron signals, multiplicity counting is used to carry out a special nuclear material (SNM) nondestructive assay. Our experimental setup is comprised of eight trans-stilbene organic scintillation detectors in a well-counter configuration, and measurements are taken on a spontaneous fission source as well as two (α,n) sources. By comparing each source's measured multiplicity distribution, the resulting measurements of the (α,n) sources can be distinguished from that of the spontaneous fission source. Such comparisons prevent the spoofing, i.e., intentional imitation, of a fission source by an (α,n) neutron source. This instructional laboratory is designed for nuclear engineering and physics students interested in organic scintillators, neutron sources, and nonproliferation radiation measurement techniques.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":"404 9","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135112044","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An alternative derivation of propagator for a linear potential","authors":"Xi-Jun Ren","doi":"10.1119/5.0103857","DOIUrl":"https://doi.org/10.1119/5.0103857","url":null,"abstract":"","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":"404 4","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135112046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coupled oscillations of the Wilberforce pendulum unveiled by smartphones","authors":"Thomas Gallot, Daniel Gau, Rodrigo García-Tejera","doi":"10.1119/5.0138680","DOIUrl":"https://doi.org/10.1119/5.0138680","url":null,"abstract":"The Wilberforce pendulum illustrates important properties of coupled oscillators including normal modes and beat phenomena. When helical spring is attached to a mass to create the Wilberforce pendulum, the longitudinal and torsional oscillations are coupled. A Wilberforce can be constructed simply from a standard laboratory spring, and a smartphone's accelerometer and gyroscope can be used to monitor the oscillations. We show that the resulting time-series data match theoretical predictions, and we share the procedures for observing both normal modes and beats.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":"403 8","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135112050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The emergence of classical mixtures from an entangled quantum state","authors":"Mark G. Kuzyk","doi":"10.1119/5.0063636","DOIUrl":"https://doi.org/10.1119/5.0063636","url":null,"abstract":"","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":"147 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135324251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Damped harmonic oscillator revisited: The fastest route to equilibrium","authors":"Karlo Lelas, Nikola Poljak, Dario Jukić","doi":"10.1119/5.0112573","DOIUrl":"https://doi.org/10.1119/5.0112573","url":null,"abstract":"Theoretically, solutions of the damped harmonic oscillator asymptotically approach equilibrium, i.e., the zero energy state, without ever reaching it exactly, and the critically damped solution approaches equilibrium faster than the underdamped or the overdamped solution. Experimentally, the systems described with this model reach equilibrium when the system's energy has dropped below some threshold corresponding to the energy resolution of the measuring apparatus. We show that one can (almost) always find an optimal underdamped solution that will reach this energy threshold sooner than all other underdamped solutions, as well as the critically damped solution, no matter how small this threshold is. We also comment on one exception to this for a particular type of initial condition, when a specific overdamped solution reaches the equilibrium state sooner than all other solutions. We experimentally confirm some of our findings.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135324539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An undergraduate physics experiment to measure the frequency-dependent impedance of inductors using an Anderson bridge","authors":"Andrew James Murray, Carl Hickman","doi":"10.1119/5.0148114","DOIUrl":"https://doi.org/10.1119/5.0148114","url":null,"abstract":"One of the most accurate ways to measure the impedance of an electrical component is to place it in a bridge that is then balanced. The most familiar bridge in an undergraduate laboratory is the Wheatstone bridge, which can measure resistance to high precision. Other types are, however, required for reactive components. This paper describes the use of Anderson's bridge to measure inductance, allowing both the inductance and resistance of different inductors to be determined. The inductors are analysed with different cores: perspex, copper, and steel. Models for the inductance that include the effect of skin depth, winding proximity, eddy currents, and core effects are introduced and compared to measurements in the frequency range from 100 Hz to 100 kHz.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135324243","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chananya Groner, Timothy M. Minteer, Kirk T. McDonald
{"title":"A magnetic field based on Ampère's force law","authors":"Chananya Groner, Timothy M. Minteer, Kirk T. McDonald","doi":"10.1119/5.0134722","DOIUrl":"https://doi.org/10.1119/5.0134722","url":null,"abstract":"Ampère's force law for steady currents was not historically associated with a magnetic field, but it could have been. A magnetic field, inspired by work of Helmholtz in 1870, can be defined such that the double-differential form of Ampère's force law is a function of a double-differential of this field. We call this field the Ampère–Weber field, B, and show that its divergence is zero everywhere, as is that of the usual, but different, magnetic field B of Maxwellian electrodynamics. The curl of the Ampère–Weber field is nonzero everywhere in static examples, in contrast to that of the usual magnetic field B. We illustrate the field B for three examples, which exhibit patterns of field lines quite different from those of the usual magnetic field. As the Ampère–Weber field is based on Ampère's force law for steady currents, it does not extrapolate well to the Lorentz force on a moving charge in a magnetic field. That is, the Ampère–Weber field B, like Ampère's force law, is more of a curiosity than a viable alternative to the usual magnetic field B. If the Ampère–Weber field had been invented in the mid-1800s, it would have been a distraction more than a step toward a generally valid electromagnetic field theory.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":"49 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135324244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Generalized Gaussian integrals with application to the Hubbard–Stratonovich transformation","authors":"Krzysztof Byczuk, Paweł Jakubczyk","doi":"10.1119/5.0141045","DOIUrl":"https://doi.org/10.1119/5.0141045","url":null,"abstract":"We analyze a variety of Gaussian integrals with the aim of revisiting the derivation of the Hubbard–Stratonovich transformation as given in standard graduate-level textbooks and provide an overview of its applications. We pinpoint problematic steps in the usual discussions and propose careful derivations of the Hubbard–Stratonovich identity pertinent to a variety of situations relevant to statistical physics and quantum field theory. These derivations are based on direct use of either a resolution identity or a series expansion. A few homework problems for students are suggested.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135324249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Special issue in celebration of the International Year of Quantum Science and Technology","authors":"","doi":"10.1119/5.0173872","DOIUrl":"https://doi.org/10.1119/5.0173872","url":null,"abstract":"","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":"31 10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135324254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Why and how to implement worked examples in upper division theoretical physics","authors":"Philipp Scheiger, Holger Cartarius, Ronny Nawrodt","doi":"10.1119/5.0105612","DOIUrl":"https://doi.org/10.1119/5.0105612","url":null,"abstract":"Studying worked examples has been shown by extensive research to be an effective method for learning to solve well-structured problems in physics and mathematics. The effectiveness of learning with worked examples has been demonstrated and documented in many research projects. In this work, we propose a new four-step approach for teaching with worked examples that includes writing explanations and finding and correcting errors. This teaching method can even be implemented in courses in which homework performance constitutes part of the grading system. This four-step approach is illustrated in the context of Lagrangian mechanics, which is ideal for the application of worked examples due to its universal approach to solve problems.","PeriodicalId":7589,"journal":{"name":"American Journal of Physics","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135324247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}