American journal of physiology. Cell physiology最新文献

筛选
英文 中文
The mechanical journey of primordial germ cells. 原始生殖细胞的机械之旅
IF 5 2区 生物学
American journal of physiology. Cell physiology Pub Date : 2024-12-01 Epub Date: 2024-10-28 DOI: 10.1152/ajpcell.00404.2024
Malhar S Chitnis, Xu Gao, Jennifer Marlena, Andrew W Holle
{"title":"The mechanical journey of primordial germ cells.","authors":"Malhar S Chitnis, Xu Gao, Jennifer Marlena, Andrew W Holle","doi":"10.1152/ajpcell.00404.2024","DOIUrl":"10.1152/ajpcell.00404.2024","url":null,"abstract":"<p><p>Primordial germ cells (PGCs) are the earliest progenitors of germline cells of the gonads in animals. The tissues that arise from primordial germ cells give rise to male and female gametes and are thus responsible for transmitting genetic information to subsequent generations. The development of gonads, from single cells to fully formed organs, is of great interest to the reproductive biology community. In most higher animals, PGCs are initially specified at a site away from the gonads. They then migrate across multiple tissue microenvironments to reach a mesodermal mass of cells called the genital ridge, where they associate with somatic cells to form sex-specific reproductive organs. Their migratory behavior has been studied extensively to identify which tissues they interact with and how this might affect gonad development. A crucial point overlooked by classical studies has been the physical environment experienced by PGCs as they migrate and the mechanical challenges they might encounter along the way. It has long been understood that migrating cells can sense and adapt to physical forces around them via a variety of mechanisms, and studies have shown that these mechanical signals can guide stem cell fate. In this review, we summarize the mechanical microenvironment of migrating PGCs in different organisms. We describe how cells can adapt to this environment and how this adaptation can influence cell fate. Finally, we propose that mechanical signals play a crucial role in the normal development of the germline and shed light on this unexplored area of developmental biology.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1532-C1545"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deubiquitinases in skeletal muscle-the underappreciated side of the ubiquitination coin. 骨骼肌中的去泛素酶--泛素化硬币中未被重视的一面。
IF 5 2区 生物学
American journal of physiology. Cell physiology Pub Date : 2024-12-01 Epub Date: 2024-09-30 DOI: 10.1152/ajpcell.00553.2024
Wayne X Du, Craig A Goodman, Paul Gregorevic
{"title":"Deubiquitinases in skeletal muscle-the underappreciated side of the ubiquitination coin.","authors":"Wayne X Du, Craig A Goodman, Paul Gregorevic","doi":"10.1152/ajpcell.00553.2024","DOIUrl":"10.1152/ajpcell.00553.2024","url":null,"abstract":"<p><p>Ubiquitination is a posttranslational modification that plays important roles in regulating protein stability, function, localization, and protein-protein interactions. Proteins are ubiquitinated via a process involving specific E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. Simultaneously, protein ubiquitination is opposed by deubiquitinating enzymes (DUBs). DUB-mediated deubiquitination can change protein function or fate and recycle ubiquitin to maintain the free ubiquitin pool. Approximately 100 DUBs have been identified in the mammalian genome, and characterized into seven classes [ubiquitin-specific protease (USP), ovarian tumor proteases (OTU), ubiquitin C-terminal hydrolase (UCH), Machado-Josephin disease (MJD), JAB1/MPN/Mov34 metalloprotease (JAMM), Ub-containing novel DUB family (MINDY), and zinc finger containing ubiquitin peptidase (ZUP) classes]. Of these 100 DUBs, there has only been relatively limited investigation of 20 specifically in skeletal muscle cells, in vitro or in vivo, using overexpression, knockdown, and knockout models. To date, evidence indicates roles for individual DUBs in regulating aspects of myogenesis, protein turnover, muscle mass, and muscle metabolism. However, the exact mechanism by which these DUBs act (i.e., the specific targets of these DUBs and the type of ubiquitin chains they target) is still largely unknown, underscoring how little we know about DUBs in skeletal muscle. This review endeavors to comprehensively summarize the current state of knowledge of the function of DUBs in skeletal muscle and highlight the opportunities for gaining a greater understanding through further research into this important area of skeletal muscle and ubiquitin biology.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1651-C1665"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hypoxia-induced TIMAP upregulation in endothelial cells and TIMAP-dependent tumor angiogenesis. 内皮细胞缺氧诱导的 TIMAP 上调和 TIMAP 依赖性肿瘤血管生成。
IF 5 2区 生物学
American journal of physiology. Cell physiology Pub Date : 2024-12-01 Epub Date: 2024-09-30 DOI: 10.1152/ajpcell.00054.2024
Salah Aburahess, Laiji Li, Aashiq Hussain, Marya Obeidat, Parnian Alavi, Abul K Azad, Nadia Jahroudi, Barbara J Ballermann
{"title":"Hypoxia-induced TIMAP upregulation in endothelial cells and TIMAP-dependent tumor angiogenesis.","authors":"Salah Aburahess, Laiji Li, Aashiq Hussain, Marya Obeidat, Parnian Alavi, Abul K Azad, Nadia Jahroudi, Barbara J Ballermann","doi":"10.1152/ajpcell.00054.2024","DOIUrl":"10.1152/ajpcell.00054.2024","url":null,"abstract":"<p><p>TGFβ-inhibited membrane associated protein (TIMAP), the endothelial cell-predominant protein phosphatase 1β regulatory subunit also known as PPP1R16B, promotes in vitro endothelial cell proliferation and angiogenic sprouting. TIMAP was first identified as a target of TGF-β1-mediated repression, but the molecular pathways regulating its expression in endothelial cells are not well-defined. This study examined the role of bone morphogenetic factor 9 (BMP9), hypoxia, and angiogenic growth factors in the regulation of TIMAP expression and determined whether TIMAP plays a role in tumor angiogenesis and growth in vivo. BMP9, which potently activated the SMAD1/5/8 pathway in endothelial cells, significantly reduced TIMAP mRNA and protein expression. Conversely, hypoxia and the prolyl hydroxylase inhibitor Roxadustat raised TIMAP mRNA and protein levels by inhibiting the SMAD1/5/8 pathway. Angiogenic growth factors, including VEGFA and IGF-I, raised endothelial TIMAP levels partly by attenuating SMAD1/5/8 pathway activation, but also through SMAD1/5/8-independent mechanisms. Cultured breast cancer E0771 cells released mediators that raised TIMAP expression in endothelial cells, effects that were inhibited by the VEGF inhibitor Sunitinib in conjunction with the IGF-1 inhibitor Picropodophyllin. In the mouse E0771 breast cancer model in vivo, tumor growth and tumor angiogenesis were markedly attenuated in TIMAP deficient, compared with wild-type littermates. These findings indicate that TIMAP plays a critical proangiogenic function during tumor angiogenesis in vivo, likely through hypoxia-driven inhibition of the SMAD1/5/8 pathway and through the elaboration of angiogenic growth factors by tumor cells.<b>NEW & NOTEWORTHY</b> The protein phosphatase 1 regulatory subunit TGFβ-inhibited membrane associated protein (TIMAP), known to activate AKT in endothelial cells (EC), was shown here to be repressed by bone morphogenetic factor 9 (BMP9). Hypoxia and angiogenic growth factors induced TIMAP expression by inhibiting the BMP9 pathway. In a mouse breast cancer model, TIMAP deletion inhibited tumor angiogenesis and tumor growth. Therefore, the proangiogenic functions of TIMAP are induced by hypoxia and angiogenic growth factors.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1359-C1372"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Healthy plasma lipidomic signatures depend on sex, age, body mass index, and contraceptives but not perceived stress. 健康血浆脂质体特征取决于性别、年龄、体重指数和避孕药具,但与感知到的压力无关。
IF 5 2区 生物学
American journal of physiology. Cell physiology Pub Date : 2024-12-01 Epub Date: 2024-10-22 DOI: 10.1152/ajpcell.00630.2024
Lisa Hahnefeld, Juliane Hackel, Sandra Trautmann, Carlo Angioni, Yannick Schreiber, Robert Gurke, Dominique Thomas, Sabine Wicker, Gerd Geisslinger, Irmgard Tegeder
{"title":"Healthy plasma lipidomic signatures depend on sex, age, body mass index, and contraceptives but not perceived stress.","authors":"Lisa Hahnefeld, Juliane Hackel, Sandra Trautmann, Carlo Angioni, Yannick Schreiber, Robert Gurke, Dominique Thomas, Sabine Wicker, Gerd Geisslinger, Irmgard Tegeder","doi":"10.1152/ajpcell.00630.2024","DOIUrl":"10.1152/ajpcell.00630.2024","url":null,"abstract":"<p><p>Perceived stress is thought to contribute to the pathogenesis of metabolic, vascular, mental, and immune diseases, with different susceptibilities in women and men. The present study investigated if and how perceived stress and/or demographic variables, including sex, age, body mass index, regular prescription drugs, occasional analgesics, or dietary supplements, manifested in plasma lipidomic profiles obtained by targeted and untargeted mass spectrometry analyses. The study included 217 healthy women and 108 healthy men, aged 18-68 yr, who were recruited in a 2:1 female:male ratio to account for women with/without contraceptives. As expected, dehydroepiandrosterone sulfate (DHEAS) and ceramides were higher in men than women, and DHEAS decreased with age, whereas ceramides increased. Contrary to expectations, neither DHEAS nor ceramides were associated with perceived stress [Perceived Stress Questionnaire with 30 questions (PSQ30 questionnaire)], which was, however, associated with BMI in men but not in women. None of the lipid species or classes showed a similar \"age × sex × BMI\" interaction, but the endocannabinoid palmitoylethanolamide (PEA) correlated with body mass index (BMI) and hypertension. Independent of perceived stress, lysophosphatidylcholines (LPCs) were lower in women than men, whereas LPC metabolites, lysophosphatidic acids (LPAs), were higher in women. The LPA:LPC ratio was particularly high in women using oral contraceptives, suggesting a strong hormone-induced extracellular conversion of LPCs to LPAs, which is catalyzed by the phospholipase D, autotaxin. The results reveal complex sex differences in perceived stress and lipidomic profiles, the latter being exacerbated by contraceptive use, but perceived stress and lipids were not directly correlated.<b>NEW & NOTEWORTHY</b> Perceived stress (PSQ questionnaire) depends on the interaction of \"sex × age × BMI.\" Plasma lipid profiles depend on sex and age. Natural sex differences are exacerbated by the use of contraceptives. Perceived stress is not correlated with specific plasma lipids or lipidomic profiles. Women have high LPA:LPC ratios in association with high levels of autotaxin.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1462-C1480"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular mapping of KCNE4-dependent regulation of Kv1.3. KCNE4 依赖性调控 Kv1.3 的分子图谱。
IF 5 2区 生物学
American journal of physiology. Cell physiology Pub Date : 2024-12-01 Epub Date: 2024-10-28 DOI: 10.1152/ajpcell.00499.2024
Daniel Sastre, Magalí Colomer-Molera, Sara R Roig, Angela de Benito-Bueno, Paula G Socuéllamos, Gregorio Fernández-Ballester, Carmen Valenzuela, Antonio Felipe
{"title":"Molecular mapping of KCNE4-dependent regulation of Kv1.3.","authors":"Daniel Sastre, Magalí Colomer-Molera, Sara R Roig, Angela de Benito-Bueno, Paula G Socuéllamos, Gregorio Fernández-Ballester, Carmen Valenzuela, Antonio Felipe","doi":"10.1152/ajpcell.00499.2024","DOIUrl":"10.1152/ajpcell.00499.2024","url":null,"abstract":"<p><p>The voltage-gated potassium channel Kv1.3 plays a crucial role in the immune system response. In leukocytes, the channel is co-expressed with the dominant negative regulatory subunit KCNE4, which associates with Kv1.3 to trigger intracellular retention and accelerate C-type inactivation of the channel. Previous research has demonstrated that the main association between these proteins occurs through both COOH-termini. However, these data fail to fully elucidate the KCNE4-dependent modulation of channel kinetics. In the present study, we analyzed the contribution of each KCNE4 domain to the modulation of Kv1.3. Our results further confirmed that the COOH-terminus of KCNE4 is the main determinant involved in the association-triggered intracellular retention of the channel. In addition, interactions throughout the transmembrane region were also observed. Both the COOH-terminus and, especially, the transmembrane domain of KCNE4 accentuated the C-type inactivation of Kv1.3. Our data provide, for the first time, the molecular effects that a KCNE peptide, such as KCNE4, exerts on a <i>Shaker</i> channel, such as Kv1.3. Our results pave the way for understanding the molecular mechanisms underlying potassium channel modulation and suggest that KCNE4 participates in the conformational rearrangement of the Kv1.3 architecture, altering the C-type inactivation of the channel.<b>NEW & NOTEWORTHY</b> This work defines, for the first time, the interactions between a Kv1 (<i>Shaker</i>) channel and a KCNE regulatory subunit. While the COOH-terminus of KCNE4 physically interacts with the channel, its transmembrane domain shapes the inactivation properties of the functional complex, fine-tuning the Kv1.3-dependent physiological response in leukocytes.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1497-C1513"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The fate of neuronal synapse homeostasis in aging, infection, and inflammation. 神经元突触平衡在衰老、感染和炎症中的命运。
IF 5 2区 生物学
American journal of physiology. Cell physiology Pub Date : 2024-12-01 Epub Date: 2024-11-04 DOI: 10.1152/ajpcell.00466.2024
Charlotte Tacke, Peter Landgraf, Daniela C Dieterich, Andrea Kröger
{"title":"The fate of neuronal synapse homeostasis in aging, infection, and inflammation.","authors":"Charlotte Tacke, Peter Landgraf, Daniela C Dieterich, Andrea Kröger","doi":"10.1152/ajpcell.00466.2024","DOIUrl":"10.1152/ajpcell.00466.2024","url":null,"abstract":"<p><p>Neuroplasticity is the brain's ability to reorganize and modify its neuronal connections in response to environmental stimuli, experiences, learning, and disease processes. This encompasses a variety of mechanisms, including changes in synaptic strength and connectivity, the formation of new synapses, alterations in neuronal structure and function, and the generation of new neurons. Proper functioning of synapses, which facilitate neuron-to-neuron communication, is crucial for brain activity. Neuronal synapse homeostasis, which involves regulating and maintaining synaptic strength and function in the central nervous system (CNS), is vital for this process. Disruptions in synaptic balance, due to factors like inflammation, aging, or infection, can lead to impaired brain function. This review highlights the main aspects and mechanisms underlying synaptic homeostasis, particularly in the context of aging, infection, and inflammation.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1546-C1563"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TFEB signaling promotes autophagic degradation of NLRP3 to attenuate neuroinflammation in diabetic encephalopathy. TFEB 信号促进 NLRP3 的自噬降解,从而减轻糖尿病脑病的神经炎症。
IF 5 2区 生物学
American journal of physiology. Cell physiology Pub Date : 2024-12-01 Epub Date: 2024-10-22 DOI: 10.1152/ajpcell.00322.2024
Yijia Lin, Lizhen Cheng, Yixin Chen, Wei Li, Qihao Guo, Ya Miao
{"title":"TFEB signaling promotes autophagic degradation of NLRP3 to attenuate neuroinflammation in diabetic encephalopathy.","authors":"Yijia Lin, Lizhen Cheng, Yixin Chen, Wei Li, Qihao Guo, Ya Miao","doi":"10.1152/ajpcell.00322.2024","DOIUrl":"10.1152/ajpcell.00322.2024","url":null,"abstract":"<p><p>Diabetic encephalopathy (DE), a neurological complication of diabetes mellitus, has an unclear etiology. Shreds of evidence show that the nucleotide-binding oligomerization domain-like receptor family protein 3 (NLRP3) inflammasome-induced neuroinflammation and transcription factor EB (TFEB)-mediated autophagy impairment may take part in DE development. The cross talk between these two pathways and their contribution to DE remains to be explored. A mouse model of type 2 diabetes mellitus (T2DM) exhibiting cognitive dysfunction was created, along with high-glucose (HG) cultured BV2 cells. Following, 3-methyladenine (3-MA) and rapamycin were used to modulate autophagy. To evaluate the potential therapeutic benefits of TFEB in DE, we overexpressed and knocked down TFEB in both mice and cells. Autophagy impairment and NLRP3 inflammasome activation were noticed in T2DM mice and HG-cultured BV2 cells. The inflammatory response caused by NLRP3 inflammasome activation was decreased by rapamycin-induced autophagy enhancement, while 3-MA treatment further deteriorated it. Nuclear translocation and expression of TFEB were hampered in HG-cultured BV2 cells and T2DM mice. Exogenous TFEB overexpression boosted NLRP3 degradation via autophagy, which in turn alleviated microglial activation as well as ameliorated cognitive deficits and neuronal damage. In addition, TFEB knockdown exacerbated neuroinflammation by decreasing autophagy-mediated NLRP3 degradation. Our findings have unraveled the pathogenesis of a previously underappreciated disease, implying that the activation of NLRP3 inflammasome and impairment of autophagy in microglia are significant etiological factors in the DE. The TFEB-mediated autophagy pathway can reduce neuroinflammation by enhancing NLRP3 degradation. This could potentially serve as a viable and innovative treatment approach for DE.<b>NEW & NOTEWORTHY</b> This article delves into the intricate connections between inflammation, autophagy, diabetes, and neurodegeneration, with a particular focus on a disease that is not yet fully understood-diabetic encephalopathy (DE). TFEB emerges as a pivotal regulator in balancing autophagy and inflammation in DE. Our findings highlight the crucial function of the TFEB-mediated autophagy pathway in mitigating inflammatory damage in DE, suggesting a new treatment strategy.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1481-C1496"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142492911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A bovine model of hypoxia-induced pulmonary hypertension reveals a gradient of immune and matrisome response with a complement signature found in circulation. 缺氧诱发肺动脉高压的牛模型揭示了免疫和母体反应的梯度,在循环中发现了补体特征。
IF 5 2区 生物学
American journal of physiology. Cell physiology Pub Date : 2024-12-01 Epub Date: 2024-11-04 DOI: 10.1152/ajpcell.00274.2024
Jason Williams, Franklyn N Iheagwam, Sean P Maroney, Lauren R Schmitt, R Dale Brown, Greta M Krafsur, Maria G Frid, Maxwell C McCabe, Aneta Gandjeva, Kurt J Williams, James P Luyendyk, Anthony J Saviola, Rubin M Tuder, Kurt Stenmark, Kirk C Hansen
{"title":"A bovine model of hypoxia-induced pulmonary hypertension reveals a gradient of immune and matrisome response with a complement signature found in circulation.","authors":"Jason Williams, Franklyn N Iheagwam, Sean P Maroney, Lauren R Schmitt, R Dale Brown, Greta M Krafsur, Maria G Frid, Maxwell C McCabe, Aneta Gandjeva, Kurt J Williams, James P Luyendyk, Anthony J Saviola, Rubin M Tuder, Kurt Stenmark, Kirk C Hansen","doi":"10.1152/ajpcell.00274.2024","DOIUrl":"10.1152/ajpcell.00274.2024","url":null,"abstract":"<p><p>Pulmonary hypertension (PH) is a progressive vascular disease characterized by vascular remodeling, stiffening, and luminal obstruction, driven by dysregulated cell proliferation, inflammation, and extracellular matrix (ECM) alterations. Despite the recognized contribution of ECM dysregulation to PH pathogenesis, the precise molecular alterations in the matrisome remain poorly understood. In this study, we employed a matrisome-focused proteomics approach to map the protein composition in a young bovine calf model of acute hypoxia-induced PH. Our findings reveal distinct alterations in the matrisome along the pulmonary vascular axis, with the most prominent changes observed in the main pulmonary artery. Key alterations included a strong immune response and wound repair signature, characterized by increased levels of complement components, coagulation cascade proteins, and provisional matrix markers. In addition, we observed upregulation of ECM-modifying enzymes, growth factors, and core ECM proteins implicated in vascular stiffening, such as collagens, periostin, tenascin-C, and fibrin(ogen). Notably, these alterations correlated with increased mean pulmonary arterial pressure and vascular remodeling. In the plasma, we identified increased levels of complement components, indicating a systemic inflammatory response accompanying the vascular remodeling. Our findings shed light on the dynamic matrisome remodeling in early-stage PH, implicating a wound-healing trajectory with distinct patterns from the main pulmonary artery to the distal vasculature. This study provides novel insights into the immune cell infiltration and matrisome alterations associated with PH pathogenesis and highlights potential biomarkers and therapeutic targets within the matrisome landscape.<b>NEW & NOTEWORTHY</b> Extensive immune cell infiltration and matrisome alterations associated with hypoxia-induced pulmonary hypertension in a large mammal model. Matrisome components correlate with increased resistance to identify candidate alterations that drive biomechanical manifestations of the disease.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":"C1666-C1680"},"PeriodicalIF":5.0,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142567342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Altered Sphingolipid Profile in Response to Skeletal Muscle Injury in a Mouse Model of Type 1 Diabetes Mellitus.
IF 5 2区 生物学
American journal of physiology. Cell physiology Pub Date : 2024-11-29 DOI: 10.1152/ajpcell.00158.2024
Jacob M Ouellette, Michael D Mallender, Dylan J Hian-Cheong, Daniel L Scurto, James E Nicholas, Stephen J Trumble, Thomas J Hawke, Matthew P Krause
{"title":"Altered Sphingolipid Profile in Response to Skeletal Muscle Injury in a Mouse Model of Type 1 Diabetes Mellitus.","authors":"Jacob M Ouellette, Michael D Mallender, Dylan J Hian-Cheong, Daniel L Scurto, James E Nicholas, Stephen J Trumble, Thomas J Hawke, Matthew P Krause","doi":"10.1152/ajpcell.00158.2024","DOIUrl":"https://doi.org/10.1152/ajpcell.00158.2024","url":null,"abstract":"<p><p>A complication of type 1 diabetes mellitus (T1DM) is diabetic myopathy which includes reduced regenerative capacity of skeletal muscle. Sphingolipids are a diverse family of lipids with roles in skeletal muscle regeneration. Some studies have found changes in sphingolipid species levels in T1DM, however, the effect of T1DM on a sphingolipid panel in regenerating skeletal muscle has not been examined. Wild type (WT) and diabetic <i>Ins2<sup>Akita+/-</sup></i> (Akita) mice received cardiotoxin-induced muscle injury in their left quadriceps, gastrocnemius-plantaris-soleus, and tibialis anterior muscles with the contralateral muscles serving as uninjured controls. Muscles were collected at 1, 3, 5, or 7 days post-injury. In regenerating muscle from Akita mice, lipid staining with Bodipy 493/503 revealed increased intramyocellular and total lipids as well as perilipin-1-positive cell numbers as compared with WT. Liquid chromatography-mass spectrometry of quadriceps was used to identify sphingolipid levels in skeletal muscle. The C22:0 and C24:0 ceramides were significantly elevated in uninjured Akita, while ceramide C24:1 was decreased in injured Akita compared to WT. Ceramide-1-phosphate was increased in Akita compared to WT regardless of injury, while sphingosine 1-phosphate (S1P) was elevated with injury in WT but this response was muted in Akita mice. Western blotting of key enzymes involved in sphingolipid metabolism revealed S1P lyase, the enzyme which degrades S1P irreversibly, was significantly elevated in the injured muscle in Akita mice during regeneration, in accordance with lower S1P levels. This mouse model of T1DM demonstrates sphingolipidomic changes that may contribute to delayed muscle regeneration.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
13C Stable Isotope Tracing Reveals Distinct Fatty Acid Oxidation Pathways in Proliferative vs. Oxidative Cells.
IF 5 2区 生物学
American journal of physiology. Cell physiology Pub Date : 2024-11-29 DOI: 10.1152/ajpcell.00611.2023
Julia Ritterhoff, Timothy McMillen, Hanna Foundas, Roland Palkovacs, Gernot Poschet, Arianne Caudal, Yaxin Liu, Patrick Most, Matthew Walker, Rong Tian
{"title":"<sup>13</sup>C Stable Isotope Tracing Reveals Distinct Fatty Acid Oxidation Pathways in Proliferative vs. Oxidative Cells.","authors":"Julia Ritterhoff, Timothy McMillen, Hanna Foundas, Roland Palkovacs, Gernot Poschet, Arianne Caudal, Yaxin Liu, Patrick Most, Matthew Walker, Rong Tian","doi":"10.1152/ajpcell.00611.2023","DOIUrl":"https://doi.org/10.1152/ajpcell.00611.2023","url":null,"abstract":"<p><p>The TCA cycle serves as a central hub to balance catabolic and anabolic needs of the cell, where carbon moieties can either contribute to oxidative metabolism or support biosynthetic reactions. This differential TCA cycle engagement for glucose-derived carbon has been extensively studied in cultured cells, but the fate of fatty acid (FA)-derived carbons is poorly understood. To fill the knowledge gap, we have developed a strategy to culture cells with long-chain FAs without altering cell viability. By tracing <sup>13</sup>C-FA we show that FA oxidation (FAO) is robust in both proliferating and oxidative cells while the metabolic pathway after citrate formation is distinct. In proliferating cells, a significant portion of carbon derived from FAO exits canonical TCA cycle as citrate and converts to unlabeled malate in cytosol. Increasing FA supply or b-oxidation does not change the partition of FA-derived carbon between cytosol and mitochondria. Oxidation of glucose competes with FA derived carbon for the canonical TCA pathway thus promoting FA carbon flowing into the alternative TCA pathway. Moreover, the coupling between FAO and the canonical TCA pathway changes with the state of oxidative energy metabolism.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":5.0,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信