Diego C Dos Reis, Jason Jin, Anderson Santos, Parinaz Dastoor, Caroline Muiler, Eleanor Zagoren, Martin Donnelley, David Parsons, Patricia Cmielewski, Nicole Reyne, Alexandra McCarron, Zachary Smith, Kaelyn Sumigray, Nadia A Ameen
{"title":"CFTR高表达者BEST4+细胞是ph敏感神经足细胞:肠道生理学和囊性纤维化疾病的新意义","authors":"Diego C Dos Reis, Jason Jin, Anderson Santos, Parinaz Dastoor, Caroline Muiler, Eleanor Zagoren, Martin Donnelley, David Parsons, Patricia Cmielewski, Nicole Reyne, Alexandra McCarron, Zachary Smith, Kaelyn Sumigray, Nadia A Ameen","doi":"10.1152/ajpcell.00082.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing (scRNA-seq) studies identified a novel subpopulation of epithelial cells along the rostrocaudal axis of human intestine specifically marked by bestrophin 4 (BEST4) that are enriched for genes regulating pH, GPCR acid-sensing receptors, satiety, cGMP signaling, HCO3<sup>-</sup> secretion, ion transport, neuropeptides, and paracrine hormones. Interestingly, BEST4+ cells in the proximal small intestine express CFTR but have not been widely linked to the previously described CFTR High Expresser Cell (CHE) subpopulation in rat and human intestine. ScRNA-seq studies in rat jejunum identified CHEs and a gene expression profile consistent with human small intestinal BEST4+ and neuropod cells. Protein immunolocalization confirmed that CHEs express CFTR, BEST4, neuropod proteins, high levels of intracellular uroguanylin (UGN), guanylyl cyclase-C (GC-C), and the proton channel otopetrin 2 (OTOP2), and display long basal processes connecting to neurons, confirming that Best4+ cells in the proximal small intestine are CHEs. OTOP2, GC-C, and CFTR traffic robustly into the apical domain of CHEs in response to acidic luminal conditions, indicating their roles in luminal pH regulation. In the ΔF508 cystic fibrosis (CF) rat jejunum, the loss of apical CFTR did not affect BEST4 protein expression in CHEs. However, there was an increased abundance of CHE cells in the ΔF508 rat jejunum compared to wild-type animals. Furthermore, ΔF508 rat CHEs expressed higher levels of GC-C at the apical domain compared to wild-type. These data implicate CHEs in intestinal CF disease pathogenesis.</p>","PeriodicalId":7585,"journal":{"name":"American journal of physiology. Cell physiology","volume":" ","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CFTR High Expresser BEST4+ cells are pH-sensing neuropod cells: new implications for intestinal physiology and Cystic Fibrosis disease.\",\"authors\":\"Diego C Dos Reis, Jason Jin, Anderson Santos, Parinaz Dastoor, Caroline Muiler, Eleanor Zagoren, Martin Donnelley, David Parsons, Patricia Cmielewski, Nicole Reyne, Alexandra McCarron, Zachary Smith, Kaelyn Sumigray, Nadia A Ameen\",\"doi\":\"10.1152/ajpcell.00082.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Single-cell RNA sequencing (scRNA-seq) studies identified a novel subpopulation of epithelial cells along the rostrocaudal axis of human intestine specifically marked by bestrophin 4 (BEST4) that are enriched for genes regulating pH, GPCR acid-sensing receptors, satiety, cGMP signaling, HCO3<sup>-</sup> secretion, ion transport, neuropeptides, and paracrine hormones. Interestingly, BEST4+ cells in the proximal small intestine express CFTR but have not been widely linked to the previously described CFTR High Expresser Cell (CHE) subpopulation in rat and human intestine. ScRNA-seq studies in rat jejunum identified CHEs and a gene expression profile consistent with human small intestinal BEST4+ and neuropod cells. Protein immunolocalization confirmed that CHEs express CFTR, BEST4, neuropod proteins, high levels of intracellular uroguanylin (UGN), guanylyl cyclase-C (GC-C), and the proton channel otopetrin 2 (OTOP2), and display long basal processes connecting to neurons, confirming that Best4+ cells in the proximal small intestine are CHEs. OTOP2, GC-C, and CFTR traffic robustly into the apical domain of CHEs in response to acidic luminal conditions, indicating their roles in luminal pH regulation. In the ΔF508 cystic fibrosis (CF) rat jejunum, the loss of apical CFTR did not affect BEST4 protein expression in CHEs. However, there was an increased abundance of CHE cells in the ΔF508 rat jejunum compared to wild-type animals. Furthermore, ΔF508 rat CHEs expressed higher levels of GC-C at the apical domain compared to wild-type. These data implicate CHEs in intestinal CF disease pathogenesis.</p>\",\"PeriodicalId\":7585,\"journal\":{\"name\":\"American journal of physiology. Cell physiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of physiology. Cell physiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1152/ajpcell.00082.2025\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of physiology. Cell physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1152/ajpcell.00082.2025","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
CFTR High Expresser BEST4+ cells are pH-sensing neuropod cells: new implications for intestinal physiology and Cystic Fibrosis disease.
Single-cell RNA sequencing (scRNA-seq) studies identified a novel subpopulation of epithelial cells along the rostrocaudal axis of human intestine specifically marked by bestrophin 4 (BEST4) that are enriched for genes regulating pH, GPCR acid-sensing receptors, satiety, cGMP signaling, HCO3- secretion, ion transport, neuropeptides, and paracrine hormones. Interestingly, BEST4+ cells in the proximal small intestine express CFTR but have not been widely linked to the previously described CFTR High Expresser Cell (CHE) subpopulation in rat and human intestine. ScRNA-seq studies in rat jejunum identified CHEs and a gene expression profile consistent with human small intestinal BEST4+ and neuropod cells. Protein immunolocalization confirmed that CHEs express CFTR, BEST4, neuropod proteins, high levels of intracellular uroguanylin (UGN), guanylyl cyclase-C (GC-C), and the proton channel otopetrin 2 (OTOP2), and display long basal processes connecting to neurons, confirming that Best4+ cells in the proximal small intestine are CHEs. OTOP2, GC-C, and CFTR traffic robustly into the apical domain of CHEs in response to acidic luminal conditions, indicating their roles in luminal pH regulation. In the ΔF508 cystic fibrosis (CF) rat jejunum, the loss of apical CFTR did not affect BEST4 protein expression in CHEs. However, there was an increased abundance of CHE cells in the ΔF508 rat jejunum compared to wild-type animals. Furthermore, ΔF508 rat CHEs expressed higher levels of GC-C at the apical domain compared to wild-type. These data implicate CHEs in intestinal CF disease pathogenesis.
期刊介绍:
The American Journal of Physiology-Cell Physiology is dedicated to innovative approaches to the study of cell and molecular physiology. Contributions that use cellular and molecular approaches to shed light on mechanisms of physiological control at higher levels of organization also appear regularly. Manuscripts dealing with the structure and function of cell membranes, contractile systems, cellular organelles, and membrane channels, transporters, and pumps are encouraged. Studies dealing with integrated regulation of cellular function, including mechanisms of signal transduction, development, gene expression, cell-to-cell interactions, and the cell physiology of pathophysiological states, are also eagerly sought. Interdisciplinary studies that apply the approaches of biochemistry, biophysics, molecular biology, morphology, and immunology to the determination of new principles in cell physiology are especially welcome.