Stress biology最新文献

筛选
英文 中文
Roles of RNA m6A modifications in plant-virus interactions. RNA m6A 修饰在植物与病毒相互作用中的作用。
Stress biology Pub Date : 2023-12-18 DOI: 10.1007/s44154-023-00133-x
Hao He, Mingxuan Jia, Jie Liu, Xueping Zhou, Fangfang Li
{"title":"Roles of RNA m<sup>6</sup>A modifications in plant-virus interactions.","authors":"Hao He, Mingxuan Jia, Jie Liu, Xueping Zhou, Fangfang Li","doi":"10.1007/s44154-023-00133-x","DOIUrl":"https://doi.org/10.1007/s44154-023-00133-x","url":null,"abstract":"<p><p>Viral RNAs have been known to contain N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) modifications since the 1970s. The function of these modifications remained unknown until the development of genome-wide methods to map m<sup>6</sup>A residues. Increasing evidence has recently revealed a strong association between m<sup>6</sup>A modifications and plant viral infection. This highlight introduces advances in the roles of RNA m<sup>6</sup>A modifications in plant-virus interactions.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"57"},"PeriodicalIF":0.0,"publicationDate":"2023-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10725857/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138815113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Foliar application of strigolactones improves the desiccation tolerance, grain yield and water use efficiency in dryland wheat through modulation of non-hydraulic root signals and antioxidant defense. 通过调节非水力根系信号和抗氧化防御,叶面喷施绞股蓝内酯可提高旱地小麦的干燥耐受性、谷物产量和水分利用效率。
Stress biology Pub Date : 2023-12-06 DOI: 10.1007/s44154-023-00127-9
Sha Guo, Xiaofei Wei, Baoluo Ma, Yongqing Ma, Zihan Yu, Pufang Li
{"title":"Foliar application of strigolactones improves the desiccation tolerance, grain yield and water use efficiency in dryland wheat through modulation of non-hydraulic root signals and antioxidant defense.","authors":"Sha Guo, Xiaofei Wei, Baoluo Ma, Yongqing Ma, Zihan Yu, Pufang Li","doi":"10.1007/s44154-023-00127-9","DOIUrl":"10.1007/s44154-023-00127-9","url":null,"abstract":"<p><p>Non-hydraulic root signals (nHRS) are affirmed as a unique positive response to soil drying, and play a crucial role in regulating water use efficiency and yield formation in dryland wheat production. Strigolactones (SLs) can enhance plant drought adaptability. However, the question of whether strigolactones enhance grain yield and water use efficiency by regulating nHRS and antioxidant defense systems in dryland wheat remains unanswered. In this study, pot experiments were conducted to investigate the effects of strigolactones on nHRS, antioxidant defense system, and grain yield and water use efficiency in dryland wheat. The results showed that external application of SLs increased drought-induced abscisic acid (ABA) accumulation and activated an earlier trigger of nHRS at 73.4% field capacity (FC), compared to 68.5% FC in the control group (CK). This phenomenon was mechanically associated with the physiological mediation of SLs. The application of SLs significantly enhanced the activities of leaf antioxidant enzymes, reduced ROS production, and mitigated oxidative damage to lipid membrane. Additionally, root biomass, root length density, and root to shoot ratio were increased under strigolactone treatment. Furthermore, exogenous application of SLs significantly increased grain yield by 34.9% under moderate drought stress. Water use efficiency was also increased by 21.5% and 33.3% under moderate and severe drought conditions respectively, compared to the control group (CK). The results suggested that the application of strigolactones triggered earlier drought-sensing mechanism and improved the antioxidant defense ability, thus enhancing grain yield and water use efficiency in dryland wheat production.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"54"},"PeriodicalIF":0.0,"publicationDate":"2023-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10700292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138489316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current research and future directions of melatonin's role in seed germination. 褪黑素在种子萌发中的研究现状及未来发展方向。
Stress biology Pub Date : 2023-12-04 DOI: 10.1007/s44154-023-00139-5
Ze Liu, Hengrui Dai, Jinjiang Hao, Rongrong Li, Xiaojun Pu, Miao Guan, Qi Chen
{"title":"Current research and future directions of melatonin's role in seed germination.","authors":"Ze Liu, Hengrui Dai, Jinjiang Hao, Rongrong Li, Xiaojun Pu, Miao Guan, Qi Chen","doi":"10.1007/s44154-023-00139-5","DOIUrl":"10.1007/s44154-023-00139-5","url":null,"abstract":"<p><p>Seed germination is a complex process regulated by internal and external factors. Melatonin (N-acetyl-5-methoxytryptamine) is a ubiquitous signaling molecule, playing an important role in regulating seed germination under normal and stressful conditions. In this review, we aim to provide a comprehensive overview on melatonin's effects on seed germination on the basis of existing literature. Under normal conditions, exogenous high levels of melatonin can suppress or delay seed germination, suggesting that melatonin may play a role in maintaining seed dormancy and preventing premature germination. Conversely, under stressful conditions (e.g., high salinity, drought, and extreme temperatures), melatonin has been found to accelerate seed germination. Melatonin can modulate the expression of genes involved in ABA and GA metabolism, thereby influencing the balance of these hormones and affecting the ABA/GA ratio. Melatonin has been shown to modulate ROS accumulation and nutrient mobilization, which can impact the germination process. In conclusion, melatonin can inhibit germination under normal conditions while promoting germination under stressful conditions via regulating the ABA/GA ratios, ROS levels, and metabolic enzyme activity. Further research in this area will deepen our understanding of melatonin's intricate role in seed germination and may contribute to the development of improved seed treatments and agricultural practices.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"53"},"PeriodicalIF":0.0,"publicationDate":"2023-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10695909/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138479767","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploitation of tolerance to drought stress in carrot (Daucus carota L.): an overview 利用胡萝卜(Daucus carota L.)对干旱胁迫的耐受性:概述
Stress biology Pub Date : 2023-12-01 DOI: 10.1007/s44154-023-00130-0
Muhammad Daniyal Junaid, Z. N. Öztürk, A. Gökçe
{"title":"Exploitation of tolerance to drought stress in carrot (Daucus carota L.): an overview","authors":"Muhammad Daniyal Junaid, Z. N. Öztürk, A. Gökçe","doi":"10.1007/s44154-023-00130-0","DOIUrl":"https://doi.org/10.1007/s44154-023-00130-0","url":null,"abstract":"","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"107 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138608818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liquid-liquid phase separation as a major mechanism of plant abiotic stress sensing and responses 液-液相分离是植物非生物胁迫感应和响应的主要机制
Stress biology Pub Date : 2023-12-01 DOI: 10.1007/s44154-023-00141-x
Xin Liu, Jian-Kang Zhu, Chun-fa Zhao
{"title":"Liquid-liquid phase separation as a major mechanism of plant abiotic stress sensing and responses","authors":"Xin Liu, Jian-Kang Zhu, Chun-fa Zhao","doi":"10.1007/s44154-023-00141-x","DOIUrl":"https://doi.org/10.1007/s44154-023-00141-x","url":null,"abstract":"","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":" 34","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138620374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Allene oxide synthase 1 contributes to limiting grain arsenic accumulation and seedling detoxification in rice. 烯氧化物合酶1在限制水稻籽粒砷积累和幼苗脱毒中起重要作用。
Stress biology Pub Date : 2023-11-30 DOI: 10.1007/s44154-023-00136-8
Xin Fan, Haiyang Tang, Xuan Chen, Fanrong Zeng, Guang Chen, Zhong-Hua Chen, Yuan Qin, Fenglin Deng
{"title":"Allene oxide synthase 1 contributes to limiting grain arsenic accumulation and seedling detoxification in rice.","authors":"Xin Fan, Haiyang Tang, Xuan Chen, Fanrong Zeng, Guang Chen, Zhong-Hua Chen, Yuan Qin, Fenglin Deng","doi":"10.1007/s44154-023-00136-8","DOIUrl":"10.1007/s44154-023-00136-8","url":null,"abstract":"<p><p>Arsenic (As) is a cancerogenic metalloid ubiquitously distributed in the environment, which can be easily accumulated in food crops like rice. Jasmonic acid (JA) and its derivatives play critical roles in plant growth and stress response. However, the role of endogenous JA in As accumulation and detoxification is still poorly understood. In this study, we found that JA biosynthesis enzymes Allene Oxide Synthases, OsAOS1 and OsAOS2, regulate As accumulation and As tolerance in rice. Evolutionary bioinformatic analysis indicated that AOS1 and AOS2 have evolved from streptophyte algae (e.g. the basal lineage Klebsormidium flaccidum) - sister clade of land plants. Compared to other two AOSs, OsAOS1 and OsAOS2 were highly expressed in all examined rice tissues and their transcripts were highly induced by As in root and shoot. Loss-of-function of OsAOS1 (osaos1-1) showed elevated As concentration in grains, which was likely attributed to the increased As translocation from root to shoot when the plants were subjected to arsenate [As(V)] but not arsenite [As (III)]. However, the mutation of OsAOS2 (osaos2-1) showed no such effect. Moreover, osaos1-1 and osaos2-1 increased the sensitivity of rice plants to both As(V) and As(III). Disrupted expression of genes involved in As accumulation and detoxification, such as OsPT4, OsNIP3;2, and OsOASTL-A1, was observed in both osaos1-1 and osaos2-1 mutant lines. In addition, a As(V)-induced significant decrease in Reactive Oxygen Species (ROS) production was observed in the root of osaos1-1 but not in osaos2-1. Taken together, our results indicate OsAOS1 modulates both As allocation and detoxification, which could be partially attributed to the altered gene expression profiling and ROS homeostasis in rice while OsAOS2 is important for As tolerance.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"52"},"PeriodicalIF":0.0,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10689621/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138464894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular characterization and pathogenicity of an infectious clone of tomato leaf curl New Delhi virus isolate infecting Cucumis melo. 黄瓜叶片卷曲新德里病毒侵染克隆的分子特征及致病性研究。
Stress biology Pub Date : 2023-11-23 DOI: 10.1007/s44154-023-00128-8
Yuzhen Mei, Lingmin Cai, Yaqin Wang, Fangfang Li, Xiuling Yang, Jinghua Yang, Xueping Zhou
{"title":"Molecular characterization and pathogenicity of an infectious clone of tomato leaf curl New Delhi virus isolate infecting Cucumis melo.","authors":"Yuzhen Mei, Lingmin Cai, Yaqin Wang, Fangfang Li, Xiuling Yang, Jinghua Yang, Xueping Zhou","doi":"10.1007/s44154-023-00128-8","DOIUrl":"10.1007/s44154-023-00128-8","url":null,"abstract":"<p><p>Tomato leaf curl New Delhi virus (ToLCNDV) is a member of the genus Begomovirus, and causes devastating disease in the world. In recent years, ToLCNDV was rapidly spreading in China and induces severe economic losses in agriculture. In this study, we sequenced and characterized the complete genome of ToLCNDV isolates from melon plants showing leaf curling and stunting symptoms in Jiangsu Province of China. We constructed a full-length infectious cDNA clone of ToLCNDV, which could induce systemic infection with typical symptoms in Nicotiana benthamiana, Citrullus melo, and Citrullus lanatus plants through agrobacterium-mediated inoculation. Further experimental evidence demonstrated that the virions produced in plants infected with the infectious clone of ToLCNDV are biologically active and sap-transmissible. We also evaluated the resistance of commercial melon cultivars to ToLCNDV and found all testing melon cultivars were susceptible to ToLCNDV. Collectively, the reverse genetic system developed herein will facilitate further research on biological functions of proteins encoded by ToLCNDV and plant-ToLCNDV interactions, which might provide new insights into breeding resistance germplasm in crops.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"51"},"PeriodicalIF":0.0,"publicationDate":"2023-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10667179/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138296896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transcriptomic response of Pinus massoniana to infection stress from the pine wood nematode Bursaphelenchus xylophilus. 马尾松对松材线虫侵染胁迫的转录组反应。
Stress biology Pub Date : 2023-11-22 DOI: 10.1007/s44154-023-00131-z
Yibo An, Yongxia Li, Ling Ma, Dongzhen Li, Wei Zhang, Yuqian Feng, Zhenkai Liu, Xuan Wang, Xiaojian Wen, Xingyao Zhang
{"title":"Transcriptomic response of Pinus massoniana to infection stress from the pine wood nematode Bursaphelenchus xylophilus.","authors":"Yibo An, Yongxia Li, Ling Ma, Dongzhen Li, Wei Zhang, Yuqian Feng, Zhenkai Liu, Xuan Wang, Xiaojian Wen, Xingyao Zhang","doi":"10.1007/s44154-023-00131-z","DOIUrl":"10.1007/s44154-023-00131-z","url":null,"abstract":"<p><p>The pinewood nematode (PWN) Bursaphelenchus xylophilus is a forestry quarantine pest and causes an extremely dangerous forest disease that is spreading worldwide. Due to the complex pathogenic factors of pine wood nematode disease, the pathogenesis is still unknown. B. xylophilus ultimately invades a host and causes death. However, little is known about the defence-regulating process of host pine after infection by B. xylophilus at the molecular level. Therefore, we wanted to understand how Pinus massoniana regulates its response to invasion by B. xylophilus. P. massoniana were artificially inoculated with B. xylophilus solution, while those without B. xylophilus solution were used as controls. P. massoniana inoculated with B. xylophilus solution for 0 h, 6 h, 24 h, and 120 h was subjected to high-throughput sequencing to obtain transcriptome data. At various time points (0 h, 6 h, 24 h, 120 h), gene transcription was measured in P. massoniana inoculated with PWN. At different time points, P. massoniana gene transcription differed significantly, with a response to early invasion by PWN. According to Gene Ontology (GO) classification and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, P. massoniana response to PWN invasion involves a wide range of genes, including plant hormone signal transformation, flavonoid biosynthesis, amino sugar and nucleoside sugar metabolism, and MAPK signalling pathways. Among them, inoculation for 120 hours had the greatest impact on differential genes. Subsequently, weighted gene coexpression network analysis (WGCNA) was used to analyse transcriptional regulation of P. massoniana after PWN infection. The results showed that the core gene module of P. massoniana responding to PWN was \"MEmagenta\", enriched in oxidative phosphorylation, amino sugar and nucleotide sugar metabolism, and the MAPK signalling pathway. MYB family transcription factors with the highest number of changes between infected and healthy pine trees accounted for 20.4% of the total differentially expressed transcription factors. To conclude, this study contributes to our understanding of the molecular mechanism of initial PWN infection of P. massoniana. Moreover, it provides some important background information on PWN pathogenic mechanisms.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"50"},"PeriodicalIF":0.0,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10665292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138292490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Life and death: the destiny of Phytophthora sojae determined by a receptor-like kinase. 生与死:大豆疫霉的命运由受体样激酶决定。
Stress biology Pub Date : 2023-11-21 DOI: 10.1007/s44154-023-00132-y
He Wang, Wen-Ming Wang, Jing Fan
{"title":"Life and death: the destiny of Phytophthora sojae determined by a receptor-like kinase.","authors":"He Wang, Wen-Ming Wang, Jing Fan","doi":"10.1007/s44154-023-00132-y","DOIUrl":"10.1007/s44154-023-00132-y","url":null,"abstract":"<p><p>Leucine-rich repeat receptor-like kinases (LRR-RLKs) are well known to act in plant growth, development, and defense responses. Plant LRR-RLKs locate on cell surface to sense and initiate responsive signals to a variety of extracellular stimuli, such as microbe-associated molecular patterns (MAMPs) released from microorganisms. LRR-RLKs are also present in microbes and function in microbial growth and development, but their roles in communicating with hosts are largely unknown. A recent study published in Nature Communications uncovered that a microbial LRR-RLK, PsRLK6, is required for oospore development in the sexual reproduction of Phytophthora sojae, an oomycete pathogen that causes root and stem rot in soybean. Meanwhile, PsRLK6 is recognized as a novel type of MAMP by an unknown plant LRR receptor-like protein and triggers immune responses in soybean, tomato, and Nicotiana benthamiana. The findings reveal dual roles of a pathogen LRR-RLK in determining both life through sexual reproduction and death through triggering plant immunity.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"49"},"PeriodicalIF":0.0,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10663419/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138178230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A tug-of-war to control plant emission of an airborne alarm signal. 一场控制工厂发射空中警报信号的拔河比赛。
Stress biology Pub Date : 2023-11-17 DOI: 10.1007/s44154-023-00135-9
Jie Hao, Junfei Ma, Hua Shi, Ying Wang
{"title":"A tug-of-war to control plant emission of an airborne alarm signal.","authors":"Jie Hao, Junfei Ma, Hua Shi, Ying Wang","doi":"10.1007/s44154-023-00135-9","DOIUrl":"10.1007/s44154-023-00135-9","url":null,"abstract":"<p><p>Aphids represent a major threat to crops. Hundreds of different viruses are aphid-borne. Upon aphid attack, plants release volatile organic compounds (VOCs) as airborne alarm signals to turn on the airborne defense (AD) of neighboring plants, thereby repelling aphids as well as reducing aphid fitness and virus transmission. This phenomenon provides a critical community-wide plant protection to fend off aphids, but the underlying molecular basis remains undetermined for a long time. In a recent article, Gong et al. established the NAC2-SAMT1 module as the core component regulating the emission of methyl-salicylate (MeSA), a major component of VOCs in aphid-attacked plants. Furthermore, they showed that SABP2 protein is critical for the perception of volatile MeSA signal by converting MeSA to Salicylic Acid (SA), which is the cue to elicit AD against aphids at the community level. Moreover, they showed that multiple viruses use a conserved glycine residue in the ATP-dependent helicase domain in viral proteins to shuttle NAC2 from the nucleus to the cytoplasm for degradation, leading to the attenuation of MeSA emission and AD. These findings illuminate the functional roles of key regulators in the complex MeSA-mediated airborne defense process and a counter-defense mechanism used by viruses, which has profound significance in advancing the knowledge of plant-pathogen interactions as well as providing potential targets for gene editing-based crop breeding.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"3 1","pages":"48"},"PeriodicalIF":0.0,"publicationDate":"2023-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10656406/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136400718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信