Soft sciencePub Date : 2022-01-01DOI: 10.20517/ss.2022.10
Kai Wang, Hao Dong, Daxing Huang, H. Shang, B. Xie, Q. Zou, Lin Zhang, C. Feng, H. Gu, F. Ding
{"title":"Advances in second-generation high-temperature superconducting tapes and their applications in high-field magnets","authors":"Kai Wang, Hao Dong, Daxing Huang, H. Shang, B. Xie, Q. Zou, Lin Zhang, C. Feng, H. Gu, F. Ding","doi":"10.20517/ss.2022.10","DOIUrl":"https://doi.org/10.20517/ss.2022.10","url":null,"abstract":"Second-generation high-temperature superconducting (2G-HTS) tapes based on REBa2Cu3O7-x (REBCO, RE: rare earth) materials enable the energy-efficient and high-power-density delivery of electricity, thereby promoting the development of clean energy generation, conversion, transmission, and storage. To overcome the weak grain-boundary connection and poor mechanical properties of these superconductors, a thin-film technology for epitaxy and biaxial textures based on flexible substrates has been developed. In recent years, high-quality 2G-HTS tapes have been produced at the kilometer scale and used in superconducting demonstration projects. This review first summarizes the development of HTS materials and briefly expounds the properties of REBCO superconducting materials. Subsequently, the structural characteristics, preparation methods, and current research progress of 2G-HTS tapes are given. In addition, the applications of REBCO tapes in constructing high-field magnets are also briefly reviewed.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67660383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft sciencePub Date : 2022-01-01DOI: 10.20517/ss.2022.11
Shaowei Song, Zhongxin Liang, Congcong Xu, Yu Wang, Xin Shi, W. Ren, Z. Ren
{"title":"Reliable metal alloy contact for Mg3+δBi1.5Sb0.5 thermoelectric devices","authors":"Shaowei Song, Zhongxin Liang, Congcong Xu, Yu Wang, Xin Shi, W. Ren, Z. Ren","doi":"10.20517/ss.2022.11","DOIUrl":"https://doi.org/10.20517/ss.2022.11","url":null,"abstract":"Proper contacts between thermoelectric (TE) materials and electrodes are critical for TE power generation or refrigeration. The Bi-rich n-type Zintl material Mg3+δBi2-xSbx exhibits very good TE performance near room temperature, which makes Mg3+δBi2-xSbx-based compounds highly promising candidates to replace the Bi2Te3-ySey alloys, but ideal contacts that can match their TE performance have not yet been well studied. Here we investigate different metal (Ni and Fe) and metal alloy (NiFe, NiCr, NiCrFe, and stainless steel) contacts on n-type Mg3+δBi1.5Sb0.5. It is first shown that the low Schottky barrier and narrow depletion region resulting from the band degeneracy and high carrier concentration of a heavily doped TE material are beneficial for the formation of a low-resistivity ohmic contact with a metal or a metal alloy. Most fully optimized TE materials can take advantage of this. Second, it is found that the NiFe/Mg3+δBi1.5Sb0.5 contact exhibits excellent thermal stability and the lowest ohmic contact resistivity among those studied after aging for over 2100 h, which is attributed to the formation of metallic NiMgBi between the NiFe and Mg3+δBi1.5Sb0.5 layers. As a buffer phase, NiMgBi can effectively prevent elemental diffusion without negatively affecting the electron transport. Benefiting from such low contact resistance, a Mg3+δBi1.5Sb0.5/Bi0.4Sb1.6Te3 unicouple exhibits competitive conversion efficiency, 6% with a 150 K temperature difference and a hot-side temperature of 448 K.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67660395","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft sciencePub Date : 2022-01-01DOI: 10.20517/ss.2022.12
Yaoxu Xiong, Zhiqiang Lin, Zeyu Zhao, Yadong Xu, Y. Wan, Pengli Zhu, Yougen Hu, Rong Sun
{"title":"A template-stripped carbon nanofiber/poly(styrene-butadiene-styrene) compound for high-sensitivity pressure and strain sensing","authors":"Yaoxu Xiong, Zhiqiang Lin, Zeyu Zhao, Yadong Xu, Y. Wan, Pengli Zhu, Yougen Hu, Rong Sun","doi":"10.20517/ss.2022.12","DOIUrl":"https://doi.org/10.20517/ss.2022.12","url":null,"abstract":"Materials selection and microstructural design of the sensing part of flexible pressure sensors are of great significance in improving their performance. However, achieving synergy between the sensing material and the microstructure of the flexible sensors remains a challenge. Herein, compressible and stretchable sensors based on a carbon nanofiber/poly(styrene-butadiene-styrene) (CNF/SBS) compound are demonstrated with a template-stripped method for detecting various human motions, including pulses, finger bending and pressure distributions. Benefiting from the adjustable fingerprint microstructure and mass fraction of CNFs, the as-designed flexible pressure sensor dramatically achieves a high sensitivity of 769.2 kPa-1, a low detection limit of 5 Pa and high reliability of over 1000 cycles. Moreover, the flexible sensor based on CNF/SBS can be stretched due to the outstanding tensile properties of SBS. The enhanced stretchable sensor remarkably possesses a high gauge factor of 105.6 with a stretch range of 0%-300% and up to 600% elongation. Importantly, the proposed pressure and tension strain sensors are investigated to monitor vigorous human motion, revealing their tremendous potential for applications in flexible compressible and stretchable wearable electronics.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"36 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67660404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft sciencePub Date : 2022-01-01DOI: 10.20517/ss.2022.13
Shubham Patel, Faheem Ershad, Min Zhao, Roslyn Rivkah Isseroff, Bin Duan, Yubin Zhou, Yong Wang, Cunjiang Yu
{"title":"Wearable electronics for skin wound monitoring and healing.","authors":"Shubham Patel, Faheem Ershad, Min Zhao, Roslyn Rivkah Isseroff, Bin Duan, Yubin Zhou, Yong Wang, Cunjiang Yu","doi":"10.20517/ss.2022.13","DOIUrl":"https://doi.org/10.20517/ss.2022.13","url":null,"abstract":"<p><p>Wound healing is one of the most complex processes in the human body, supported by many cellular events that are tightly coordinated to repair the wound efficiently. Chronic wounds have potentially life-threatening consequences. Traditional wound dressings come in direct contact with wounds to help them heal and avoid further complications. However, traditional wound dressings have some limitations. These dressings do not provide real-time information on wound conditions, leading clinicians to miss the best time for adjusting treatment. Moreover, the current diagnosis of wounds is relatively subjective. Wearable electronics have become a unique platform to potentially monitor wound conditions in a continuous manner accurately and even to serve as accelerated healing vehicles. In this review, we briefly discuss the wound status with some objective parameters/biomarkers influencing wound healing, followed by the presentation of various novel wearable devices used for monitoring wounds and accelerating wound healing. We further summarize the associated device working principles. This review concludes by highlighting some major challenges in wearable devices toward wound healing that need to be addressed by the research community.</p>","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"2 ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10093663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9302896","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Recent advances in flexible and soft gel-based pressure sensors","authors":"Gui-zhen Sun, Peng Wang, Yongxiang Jiang, Hongchang Sun, Chuizhou Meng, Shijie Guo","doi":"10.20517/ss.2022.16","DOIUrl":"https://doi.org/10.20517/ss.2022.16","url":null,"abstract":"Gels, as typical flexible and soft materials, possess the intrinsic merits of transparent bionic structures, superior mechanical properties and excellent elasticity and viscosity. Recently, gel-based materials have attracted significant attention as a result of their broad and promising applications in biomedical, energy storage, light emission, actuator, military and aerospace devices, especially the intelligent sensing for human-related applications. Among the various flexible and soft pressure sensors, gel-based ones have been gradually studied as an emerging hot research topic. This review focuses on the latest findings in the rapidly developing field of gel-based pressure sensors. Firstly, the classification and properties of the three types of gels and their corresponding fabrication methods are introduced. Secondly, the four basic working principles of pressure sensors are summarized with a comparison of their advantages and disadvantages, followed by an introduction to the construction of pressure sensors based on gel structures. Thirdly, the latest representative research on the three types of gel-based materials towards various wearable sensing applications, including electronic skin, human motion capture, healthcare and rehabilitation, physiological activity monitoring and human-machine interactions, is comprehensively reviewed. Finally, a summary of the remaining challenges and an outline of the development trend for this field are presented.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67660057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft sciencePub Date : 2022-01-01DOI: 10.20517/ss.2022.04
Tianlang Yu, Maria D. Marquez, H. Tran, T. Lee
{"title":"Crosslinked organosulfur-based self-assembled monolayers: formation and applications","authors":"Tianlang Yu, Maria D. Marquez, H. Tran, T. Lee","doi":"10.20517/ss.2022.04","DOIUrl":"https://doi.org/10.20517/ss.2022.04","url":null,"abstract":"Self-assembled monolayers (SAMs) have found use in diverse applications that range from corrosion prevention to biosensing. However, for all of these applications, stability remains a key challenge for the utilization of SAMs. Over the last decade, intermolecular crosslinking as a method to enhance the thermal and chemical stability of SAMs has attracted increased attention from scientists and engineers. As such, this review introduces a variety of crosslinked SAMs: (1) aromatic thiol-based SAMs; (2) olefinic- and acetylenic-based alkanethiols; (3) other aliphatic alkanethiols; (4) silane-based alkanethiols; (5) boronic acid-based alkanethiols; and (6) crosslinked SAMs realized by hydrogen bonding. By offering insight into the structure-application relationships of the aforementioned SAMs, this review seeks to inspire researchers toward the development of new classes of SAMs with enhanced stabilities and working lifetimes.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67659583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A brief review on miniature flexible and soft tactile sensors for interventional catheter applications","authors":"Yurui Li, Peng Wang, Chuizhou Meng, Wenqiang Chen, Longyuan Zhang, Shijie Guo","doi":"10.20517/ss.2022.05","DOIUrl":"https://doi.org/10.20517/ss.2022.05","url":null,"abstract":"Interventional surgery has the advantages of small skin incision, little bleed loss, low postoperative infection and short recovery time, and thus has gradually become the preferred surgical approach over traditional open surgeries. Even though great achievements have been made towards clinical applications, limitations still exist, among which the loss of natural tactile perception of surgeons due to their indirect touch sense along the long catheter to the intervening human tissue is the crucial one. In recent years, researchers have dedicated great efforts in developing advanced medical catheters with smart tactile perception ability and made considerable progress. In this regard, we review the most recent development on the state-of-the-art miniature flexible and soft tactile sensors that are able to be integrated in the tip or on the side wall of medical catheters, with focus on the sensing mechanism, design requirement, device configuration and sensing performance of different types of sensors as well as their application demonstration in synthetic anatomical models and in-vivo animal experiment. After reviewing the representative research work, challenges that still exist are summarized and prospects toward future development are put forward.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"360 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67659593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft sciencePub Date : 2022-01-01DOI: 10.20517/ss.2021.19
Fangyi Guan, C. Guo
{"title":"Flexible, high-strength, and porous nano-nano composites based on bacterial cellulose for wearable electronics: a review","authors":"Fangyi Guan, C. Guo","doi":"10.20517/ss.2021.19","DOIUrl":"https://doi.org/10.20517/ss.2021.19","url":null,"abstract":"Portable flexible electronics based on petroleum-based polymers have stepped onto the stage of modern technology. Increasing environmental problems facilitate emerging technologies based on cellulose because of its abundant sources and the nature of CO2 consumption and biodegradability. Bacterial cellulose (BC) stands out among all cellulose materials because of its unique features, including the abundant hydrogen bonds, small diameter, three-dimensional nano-networked structures, high purity and crystallinity, and the degree of polymerization. The adequate properties impart BC and its nano-nano composites with superior balance among ductility, strength, and porosity, which are crucial for wearables. The principles of this balance, the fabrication of the nano-nano composites, and the wearable electronic applications based on BC are discussed in detail in this review.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67659958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft sciencePub Date : 2022-01-01DOI: 10.20517/ss.2022.19
{"title":"Stiffness-tunable and shape-locking soft actuators based on 3D-printed hybrid multi-materials","authors":"","doi":"10.20517/ss.2022.19","DOIUrl":"https://doi.org/10.20517/ss.2022.19","url":null,"abstract":"Soft actuators have been receiving tremendous attention as a result of their excellent adaptability to the environment. However, due to their inherently low stiffness, soft actuators are difficult to adapt to high-load tasks. Despite previous efforts in developing stiffness-tunable actuators by utilizing variable stiffness materials, they still suffer from limitations, including relatively low load and locking capacity to grasp weights and difficulties regarding their fabrication with complex structures. This work reports a novel stiffness-tunable and shape-locking soft (Tri-S) actuator using hybrid multi-material 3D printing. The Tri-S actuator consists of polylactic acid, thermoplastic polyurethane and a flexible carbon fiber heating wire. Its stiffness can be effectively tuned by Joule heating. A soft robotic gripper equipped with three Tri-S actuators demonstrates their stiffness-tunable and shape-locking capability by grasping and holding objects of various shapes and weights. The gripper can grasp weights up to 2.2 kg with an external driving force by tuning the stiffness and hold weights up to 310 g depending on its own shape locking without an external driving power source.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67660127","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soft sciencePub Date : 2022-01-01DOI: 10.20517/ss.2022.06
Nam-in Kim, Jong Moon Lee, Mina Moradnia, Jie Chen, S. Pouladi, Miad Yarali, Ja Yeon Kim, M. Kwon, T. R. Lee, J. Ryou
{"title":"Biocompatible composite thin-film wearable piezoelectric pressure sensor for monitoring of physiological and muscle motions","authors":"Nam-in Kim, Jong Moon Lee, Mina Moradnia, Jie Chen, S. Pouladi, Miad Yarali, Ja Yeon Kim, M. Kwon, T. R. Lee, J. Ryou","doi":"10.20517/ss.2022.06","DOIUrl":"https://doi.org/10.20517/ss.2022.06","url":null,"abstract":"Whereas piezoelectric pressure sensors (PPSs) have been applied in the monitoring of human body movement and physiological parameters, they show inherent limitations in wearable applications, including toxicity, degradation, and brittleness. In this study, we develop safe, stable, and mechanically flexible composite thin films consisting of polyvinylidene fluoride (PVDF), BaTiO3 nanoparticles (BTO-NPs), and textured aluminum nitride (AlN) thin film for the demonstration of wearable PPS with enhanced output performance and biocompatibility. The PPS made of BTO-NP-embedded-PVDF and AlN film on Cu foil is attached to different parts of human body to measure different output voltages depending on the physiological and physical stimulus. The simple bending (from breathing, chewing, and swallowing), joint motions (at wrist, elbow, and finger), and low- (from eyeball movement) and high-pressure applications (by squat, lunge, and walking) are measured. Our PVDF+BTO-NP/AlN-PPS (PBA-PPS) device has the potential for personal safety, healthcare, and activity monitoring applications with easy wearability.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67659665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}