Yaoxu Xiong, Zhiqiang Lin, Zeyu Zhao, Yadong Xu, Y. Wan, Pengli Zhu, Yougen Hu, Rong Sun
{"title":"A template-stripped carbon nanofiber/poly(styrene-butadiene-styrene) compound for high-sensitivity pressure and strain sensing","authors":"Yaoxu Xiong, Zhiqiang Lin, Zeyu Zhao, Yadong Xu, Y. Wan, Pengli Zhu, Yougen Hu, Rong Sun","doi":"10.20517/ss.2022.12","DOIUrl":null,"url":null,"abstract":"Materials selection and microstructural design of the sensing part of flexible pressure sensors are of great significance in improving their performance. However, achieving synergy between the sensing material and the microstructure of the flexible sensors remains a challenge. Herein, compressible and stretchable sensors based on a carbon nanofiber/poly(styrene-butadiene-styrene) (CNF/SBS) compound are demonstrated with a template-stripped method for detecting various human motions, including pulses, finger bending and pressure distributions. Benefiting from the adjustable fingerprint microstructure and mass fraction of CNFs, the as-designed flexible pressure sensor dramatically achieves a high sensitivity of 769.2 kPa-1, a low detection limit of 5 Pa and high reliability of over 1000 cycles. Moreover, the flexible sensor based on CNF/SBS can be stretched due to the outstanding tensile properties of SBS. The enhanced stretchable sensor remarkably possesses a high gauge factor of 105.6 with a stretch range of 0%-300% and up to 600% elongation. Importantly, the proposed pressure and tension strain sensors are investigated to monitor vigorous human motion, revealing their tremendous potential for applications in flexible compressible and stretchable wearable electronics.","PeriodicalId":74837,"journal":{"name":"Soft science","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20517/ss.2022.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Materials selection and microstructural design of the sensing part of flexible pressure sensors are of great significance in improving their performance. However, achieving synergy between the sensing material and the microstructure of the flexible sensors remains a challenge. Herein, compressible and stretchable sensors based on a carbon nanofiber/poly(styrene-butadiene-styrene) (CNF/SBS) compound are demonstrated with a template-stripped method for detecting various human motions, including pulses, finger bending and pressure distributions. Benefiting from the adjustable fingerprint microstructure and mass fraction of CNFs, the as-designed flexible pressure sensor dramatically achieves a high sensitivity of 769.2 kPa-1, a low detection limit of 5 Pa and high reliability of over 1000 cycles. Moreover, the flexible sensor based on CNF/SBS can be stretched due to the outstanding tensile properties of SBS. The enhanced stretchable sensor remarkably possesses a high gauge factor of 105.6 with a stretch range of 0%-300% and up to 600% elongation. Importantly, the proposed pressure and tension strain sensors are investigated to monitor vigorous human motion, revealing their tremendous potential for applications in flexible compressible and stretchable wearable electronics.