SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology最新文献

筛选
英文 中文
Graph-Based Methods for Language Processing and Information Retrieval 基于图的语言处理和信息检索方法
Dragomir R. Radev
{"title":"Graph-Based Methods for Language Processing and Information Retrieval","authors":"Dragomir R. Radev","doi":"10.1109/SLT.2006.326781","DOIUrl":"https://doi.org/10.1109/SLT.2006.326781","url":null,"abstract":"Summary form only given. A number of problems in information retrieval and natural language processing can be approached using graph theory. Some representative examples in IR include Brin and Page's Pagerank and Kleinberg's HITS for document ranking using graph-based random walk models. In NLP, one could mention Pang and Lee's work on sentiment analysis using graph min- cuts, Mihalcea's work on word sense disambiguation, Zhu et al.'s label propagation algorithms, Toutanova et al.'s prepositional attachment algorithm, and McDonald et al.'s dependency parsing algorithm using minimum spanning trees. In this talk I will quickly summarize three graph-based algorithms developed recently at the University of Michigan: (a) lexrank, a method for multidocument summarization based on random walks on lexical centrality graphs, (b) TUMBL, a generic method using bipartite graphs for semi-supervised learning, and (c) biased lexrank, a semi-supervised technique for passage ranking for information retrieval and discuss the applicability of such techniques to other problems in Natural Language Processing and Information Retrieval.","PeriodicalId":74811,"journal":{"name":"SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology","volume":"6 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89351600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model Adaptation for Dialog Act Tagging 对话行为标注的模型自适应
Gökhan Tür, Ümit Güz, Dilek Z. Hakkani-Tür
{"title":"Model Adaptation for Dialog Act Tagging","authors":"Gökhan Tür, Ümit Güz, Dilek Z. Hakkani-Tür","doi":"10.1109/SLT.2006.326825","DOIUrl":"https://doi.org/10.1109/SLT.2006.326825","url":null,"abstract":"In this paper, we analyze the effect of model adaptation for dialog act tagging. The goal of adaptation is to improve the performance of the tagger using out-of-domain data or models. Dialog act tagging aims to provide a basis for further discourse analysis and understanding in conversational speech. In this study we used the ICSI meeting corpus with high-level meeting recognition dialog act (MRDA) tags, that is, question, statement, backchannel, disruptions, and floor grabbers/holders. We performed controlled adaptation experiments using the Switchboard (SWBD) corpus with SWBD-DAMSL tags as the out-of-domain corpus. Our results indicate that we can achieve significantly better dialog act tagging by automatically selecting a subset of the Switchboard corpus and combining the confidences obtained by both in-domain and out-of-domain models via logistic regression, especially when the in-domain data is limited.","PeriodicalId":74811,"journal":{"name":"SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology","volume":"204 1","pages":"94-97"},"PeriodicalIF":0.0,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77023227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信