{"title":"对话行为标注的模型自适应","authors":"Gökhan Tür, Ümit Güz, Dilek Z. Hakkani-Tür","doi":"10.1109/SLT.2006.326825","DOIUrl":null,"url":null,"abstract":"In this paper, we analyze the effect of model adaptation for dialog act tagging. The goal of adaptation is to improve the performance of the tagger using out-of-domain data or models. Dialog act tagging aims to provide a basis for further discourse analysis and understanding in conversational speech. In this study we used the ICSI meeting corpus with high-level meeting recognition dialog act (MRDA) tags, that is, question, statement, backchannel, disruptions, and floor grabbers/holders. We performed controlled adaptation experiments using the Switchboard (SWBD) corpus with SWBD-DAMSL tags as the out-of-domain corpus. Our results indicate that we can achieve significantly better dialog act tagging by automatically selecting a subset of the Switchboard corpus and combining the confidences obtained by both in-domain and out-of-domain models via logistic regression, especially when the in-domain data is limited.","PeriodicalId":74811,"journal":{"name":"SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology","volume":"204 1","pages":"94-97"},"PeriodicalIF":0.0000,"publicationDate":"2006-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Model Adaptation for Dialog Act Tagging\",\"authors\":\"Gökhan Tür, Ümit Güz, Dilek Z. Hakkani-Tür\",\"doi\":\"10.1109/SLT.2006.326825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we analyze the effect of model adaptation for dialog act tagging. The goal of adaptation is to improve the performance of the tagger using out-of-domain data or models. Dialog act tagging aims to provide a basis for further discourse analysis and understanding in conversational speech. In this study we used the ICSI meeting corpus with high-level meeting recognition dialog act (MRDA) tags, that is, question, statement, backchannel, disruptions, and floor grabbers/holders. We performed controlled adaptation experiments using the Switchboard (SWBD) corpus with SWBD-DAMSL tags as the out-of-domain corpus. Our results indicate that we can achieve significantly better dialog act tagging by automatically selecting a subset of the Switchboard corpus and combining the confidences obtained by both in-domain and out-of-domain models via logistic regression, especially when the in-domain data is limited.\",\"PeriodicalId\":74811,\"journal\":{\"name\":\"SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology\",\"volume\":\"204 1\",\"pages\":\"94-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2006.326825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2006.326825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we analyze the effect of model adaptation for dialog act tagging. The goal of adaptation is to improve the performance of the tagger using out-of-domain data or models. Dialog act tagging aims to provide a basis for further discourse analysis and understanding in conversational speech. In this study we used the ICSI meeting corpus with high-level meeting recognition dialog act (MRDA) tags, that is, question, statement, backchannel, disruptions, and floor grabbers/holders. We performed controlled adaptation experiments using the Switchboard (SWBD) corpus with SWBD-DAMSL tags as the out-of-domain corpus. Our results indicate that we can achieve significantly better dialog act tagging by automatically selecting a subset of the Switchboard corpus and combining the confidences obtained by both in-domain and out-of-domain models via logistic regression, especially when the in-domain data is limited.