基于图的语言处理和信息检索方法

Dragomir R. Radev
{"title":"基于图的语言处理和信息检索方法","authors":"Dragomir R. Radev","doi":"10.1109/SLT.2006.326781","DOIUrl":null,"url":null,"abstract":"Summary form only given. A number of problems in information retrieval and natural language processing can be approached using graph theory. Some representative examples in IR include Brin and Page's Pagerank and Kleinberg's HITS for document ranking using graph-based random walk models. In NLP, one could mention Pang and Lee's work on sentiment analysis using graph min- cuts, Mihalcea's work on word sense disambiguation, Zhu et al.'s label propagation algorithms, Toutanova et al.'s prepositional attachment algorithm, and McDonald et al.'s dependency parsing algorithm using minimum spanning trees. In this talk I will quickly summarize three graph-based algorithms developed recently at the University of Michigan: (a) lexrank, a method for multidocument summarization based on random walks on lexical centrality graphs, (b) TUMBL, a generic method using bipartite graphs for semi-supervised learning, and (c) biased lexrank, a semi-supervised technique for passage ranking for information retrieval and discuss the applicability of such techniques to other problems in Natural Language Processing and Information Retrieval.","PeriodicalId":74811,"journal":{"name":"SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology","volume":"6 1","pages":"4"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-Based Methods for Language Processing and Information Retrieval\",\"authors\":\"Dragomir R. Radev\",\"doi\":\"10.1109/SLT.2006.326781\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary form only given. A number of problems in information retrieval and natural language processing can be approached using graph theory. Some representative examples in IR include Brin and Page's Pagerank and Kleinberg's HITS for document ranking using graph-based random walk models. In NLP, one could mention Pang and Lee's work on sentiment analysis using graph min- cuts, Mihalcea's work on word sense disambiguation, Zhu et al.'s label propagation algorithms, Toutanova et al.'s prepositional attachment algorithm, and McDonald et al.'s dependency parsing algorithm using minimum spanning trees. In this talk I will quickly summarize three graph-based algorithms developed recently at the University of Michigan: (a) lexrank, a method for multidocument summarization based on random walks on lexical centrality graphs, (b) TUMBL, a generic method using bipartite graphs for semi-supervised learning, and (c) biased lexrank, a semi-supervised technique for passage ranking for information retrieval and discuss the applicability of such techniques to other problems in Natural Language Processing and Information Retrieval.\",\"PeriodicalId\":74811,\"journal\":{\"name\":\"SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology\",\"volume\":\"6 1\",\"pages\":\"4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SLT.2006.326781\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SLT ... : ... IEEE Workshop on Spoken Language Technology : proceedings. IEEE Workshop on Spoken Language Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLT.2006.326781","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

只提供摘要形式。信息检索和自然语言处理中的许多问题都可以用图论来解决。IR中的一些代表性例子包括Brin和Page的Pagerank和Kleinberg使用基于图的随机漫步模型进行文档排名的HITS。在NLP中,人们可以提到Pang和Lee使用图最小切割进行情感分析的工作,Mihalcea在词义消歧方面的工作,Zhu等人的标签传播算法,Toutanova等人的prepositional attachment算法,以及McDonald等人使用最小生成树的依赖解析算法。在这次演讲中,我将快速总结密歇根大学最近开发的三种基于图的算法:(a) lexrank,一种基于词汇中心图随机游走的多文档摘要方法,(b) TUMBL,一种使用二部图进行半监督学习的通用方法,以及(c) biased lexrank,一种用于信息检索的段落排序的半监督技术,并讨论了这些技术在自然语言处理和信息检索中的其他问题的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graph-Based Methods for Language Processing and Information Retrieval
Summary form only given. A number of problems in information retrieval and natural language processing can be approached using graph theory. Some representative examples in IR include Brin and Page's Pagerank and Kleinberg's HITS for document ranking using graph-based random walk models. In NLP, one could mention Pang and Lee's work on sentiment analysis using graph min- cuts, Mihalcea's work on word sense disambiguation, Zhu et al.'s label propagation algorithms, Toutanova et al.'s prepositional attachment algorithm, and McDonald et al.'s dependency parsing algorithm using minimum spanning trees. In this talk I will quickly summarize three graph-based algorithms developed recently at the University of Michigan: (a) lexrank, a method for multidocument summarization based on random walks on lexical centrality graphs, (b) TUMBL, a generic method using bipartite graphs for semi-supervised learning, and (c) biased lexrank, a semi-supervised technique for passage ranking for information retrieval and discuss the applicability of such techniques to other problems in Natural Language Processing and Information Retrieval.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信