{"title":"PT-symmetric, non-Hermitian quantum many-body physics-a methodological perspective.","authors":"V Meden, L Grunwald, D M Kennes","doi":"10.1088/1361-6633/ad05f3","DOIUrl":"10.1088/1361-6633/ad05f3","url":null,"abstract":"<p><p>We review the methodology to theoretically treat parity-time- (PT-) symmetric, non-Hermitian quantum many-body systems. They are realized as open quantum systems withPTsymmetry and couplings to the environment which are compatible.PT-symmetric non-Hermitian quantum systems show a variety of fascinating properties which single them out among generic open systems. The study of the latter has a long history in quantum theory. These studies are based on the Hermiticity of the combined system-reservoir setup and were developed by the atomic, molecular, and optical physics as well as the condensed matter physics communities. The interest of the mathematical physics community inPT-symmetric, non-Hermitian systems led to a new perspective and the development of the elegant mathematical formalisms ofPT-symmetric and biorthogonal quantum mechanics, which do not make any reference to the environment. In the mathematical physics research, the focus is mainly on the remarkable spectral properties of the Hamiltonians and the characteristics of the corresponding single-particle eigenstates. Despite being non-Hermitian, the Hamiltonians can show parameter regimes, in which all eigenvalues are real. To investigate emergent quantum many-body phenomena in condensed matter physics and to make contact to experiments one, however, needs to study expectation values of observables and correlation functions. One furthermore, has to investigate statistical ensembles and not only eigenstates. The adoption of the concepts ofPT-symmetric and biorthogonal quantum mechanics by parts of the condensed matter community led to a controversial status of the methodology. There is no consensus on fundamental issues, such as, what a proper observable is, how expectation values are supposed to be computed, and what adequate equilibrium statistical ensembles and their corresponding density matrices are. With the technological progress in engineering and controlling open quantum many-body systems it is high time to reconcile the Hermitian with thePT-symmetric and biorthogonal perspectives. We comprehensively review the different approaches, including the overreaching idea of pseudo-Hermiticity. To motivate the Hermitian perspective, which we propagate here, we mainly focus on the ancilla approach. It allows to embed a non-Hermitian system into a larger, Hermitian one. In contrast to other techniques, e.g. master equations, it does not rely on any approximations. We discuss the peculiarities ofPT-symmetric and biorthogonal quantum mechanics. In these, what is considered to be an observable depends on the Hamiltonian or the selected (biorthonormal) basis. Crucially in addition, what is denoted as an 'expectation value' lacks a direct probabilistic interpretation, and what is viewed as the canonical density matrix is non-stationary and non-Hermitian. Furthermore, the non-unitarity of the time evolution is hidden within the formalism. We pick up several model Hamiltonians, which so far","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49694856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heterogeneous anomalous transport in cellular and molecular biology.","authors":"Thomas Andrew Waigh, Nickolay Korabel","doi":"10.1088/1361-6633/ad058f","DOIUrl":"10.1088/1361-6633/ad058f","url":null,"abstract":"<p><p>It is well established that a wide variety of phenomena in cellular and molecular biology involve anomalous transport e.g. the statistics for the motility of cells and molecules are fractional and do not conform to the archetypes of simple diffusion or ballistic transport. Recent research demonstrates that anomalous transport is in many cases heterogeneous in both time and space. Thus single anomalous exponents and single generalised diffusion coefficients are unable to satisfactorily describe many crucial phenomena in cellular and molecular biology. We consider advances in the field of<i>heterogeneous anomalous transport</i>(<i>HAT</i>) highlighting: experimental techniques (single molecule methods, microscopy, image analysis, fluorescence correlation spectroscopy, inelastic neutron scattering, and nuclear magnetic resonance), theoretical tools for data analysis (robust statistical methods such as first passage probabilities, survival analysis, different varieties of mean square displacements, etc), analytic theory and generative theoretical models based on simulations. Special emphasis is made on high throughput analysis techniques based on machine learning and neural networks. Furthermore, we consider anomalous transport in the context of microrheology and the heterogeneous viscoelasticity of complex fluids. HAT in the wavefronts of reaction-diffusion systems is also considered since it plays an important role in morphogenesis and signalling. In addition, we present specific examples from cellular biology including embryonic cells, leucocytes, cancer cells, bacterial cells, bacterial biofilms, and eukaryotic microorganisms. Case studies from molecular biology include DNA, membranes, endosomal transport, endoplasmic reticula, mucins, globular proteins, and amyloids.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49686027","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chenyin Jiao, Shenghai Pei, Song Wu, Zenghui Wang, Juan Xia
{"title":"Tuning and exploiting interlayer coupling in two-dimensional van der Waals heterostructures.","authors":"Chenyin Jiao, Shenghai Pei, Song Wu, Zenghui Wang, Juan Xia","doi":"10.1088/1361-6633/acfe89","DOIUrl":"10.1088/1361-6633/acfe89","url":null,"abstract":"<p><p>Two-dimensional (2D) layered materials can stack into new material systems, with van der Waals (vdW) interaction between the adjacent constituent layers. This stacking process of 2D atomic layers creates a new degree of freedom-interlayer interface between two adjacent layers-that can be independently studied and tuned from the intralayer degree of freedom. In such heterostructures (HSs), the physical properties are largely determined by the vdW interaction between the individual layers,<i>i.e.</i>interlayer coupling, which can be effectively tuned by a number of means. In this review, we summarize and discuss a number of such approaches, including stacking order, electric field, intercalation, and pressure, with both their experimental demonstrations and theoretical predictions. A comprehensive overview of the modulation on structural, optical, electrical, and magnetic properties by these four approaches are also presented. We conclude this review by discussing several prospective research directions in 2D HSs field, including fundamental physics study, property tuning techniques, and future applications.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41176111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chandan Datta, Tulja Varun Kondra, Marek Miller, Alexander Streltsov
{"title":"Catalysis of entanglement and other quantum resources.","authors":"Chandan Datta, Tulja Varun Kondra, Marek Miller, Alexander Streltsov","doi":"10.1088/1361-6633/acfbec","DOIUrl":"10.1088/1361-6633/acfbec","url":null,"abstract":"<p><p>In chemistry, a catalyst is a substance which enables a chemical reaction or increases its rate, while remaining unchanged in the process. Instead of chemical reactions,<i>quantum catalysis</i>enhances our ability to convert quantum states into each other under physical constraints. The nature of the constraints depends on the problem under study and can arise, e.g. from energy preservation. This article reviews the most recent developments in quantum catalysis and gives a historical overview of this research direction. We focus on the catalysis of quantum entanglement and coherence, and also discuss this phenomenon in quantum thermodynamics and general quantum resource theories. We review applications of quantum catalysis and also discuss the recent efforts on universal catalysis, where the quantum state of the catalyst does not depend on the states to be transformed. Catalytic embezzling is also considered, a phenomenon that occurs if the catalyst's state can change in the transition.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41143037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Non-local and non-Hermitian acoustic metasurfaces.","authors":"Xu Wang, Ruizhi Dong, Yong Li, Yun Jing","doi":"10.1088/1361-6633/acfbeb","DOIUrl":"10.1088/1361-6633/acfbeb","url":null,"abstract":"<p><p>Acoustic metasurfaces are at the frontier of acoustic functional material research owing to their advanced capabilities of wave manipulation at an acoustically vanishing size. Despite significant progress in the last decade, conventional acoustic metasurfaces are still fundamentally limited by their underlying physics and design principles. First, conventional metasurfaces assume that unit cells are decoupled and therefore treat them individually during the design process. Owing to diffraction, however, the non-locality of the wave field could strongly affect the efficiency and even alter the behavior of acoustic metasurfaces. Additionally, conventional acoustic metasurfaces operate by modulating the phase and are typically treated as lossless systems. Due to the narrow regions in acoustic metasurfaces' subwavelength unit cells, however, losses are naturally present and could compromise the performance of acoustic metasurfaces. While the conventional wisdom is to minimize these effects, a counter-intuitive way of thinking has emerged, which is to harness the non-locality as well as loss for enhanced acoustic metasurface functionality. This has led to a new generation of acoustic metasurface design paradigm that is empowered by non-locality and non-Hermicity, providing new routes for controlling sound using the acoustic version of 2D materials. This review details the progress of non-local and non-Hermitian acoustic metasurfaces, providing an overview of the recent acoustic metasurface designs and discussing the critical role of non-locality and loss in acoustic metasurfaces. We further outline the synergy between non-locality and non-Hermiticity, and delineate the potential of using non-local and non-Hermitian acoustic metasurfaces as a new platform for investigating exceptional points, the hallmark of non-Hermitian physics. Finally, the current challenges and future outlook for this burgeoning field are discussed.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41164646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Viscosity and diffusion in life processes and tuning of fundamental constants.","authors":"K Trachenko","doi":"10.1088/1361-6633/acfd3e","DOIUrl":"10.1088/1361-6633/acfd3e","url":null,"abstract":"<p><p>Viewed as one of the grandest questions in modern science, understanding fundamental physical constants has been discussed in high-energy particle physics, astronomy and cosmology. Here, I review how condensed matter and liquid physics gives new insights into fundamental constants and their tuning. This is based on two observations: first, cellular life and the existence of observers depend on viscosity and diffusion. Second, the lower bound on viscosity and upper bound on diffusion are set by fundamental constants, and I briefly review this result and related recent developments in liquid physics. I will subsequently show that bounds on viscosity, diffusion and the newly introduced fundamental velocity gradient in a biochemical machine can all be varied while keeping the fine-structure constant and the proton-to-electron mass ratio intact. This implies that it is possible to produce heavy elements in stars but have a viscous planet where all liquids have very high viscosity (for example that of tar or higher) and where life may not exist. Knowing the range of bio-friendly viscosity and diffusion, we will be able to calculate the range of fundamental constants which favour cellular life and observers and compare this tuning with that discussed in high-energy physics previously. This invites an inter-disciplinary research between condensed matter physics and life sciences, and I formulate several questions that life science can address. I finish with a conjecture of multiple tuning and an evolutionary mechanism.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":"86 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41123806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quantum interactions in topological R166 kagome magnet.","authors":"Xitong Xu, Jiaxin Yin, Zhe Qu, Shuang Jia","doi":"10.1088/1361-6633/acfd3d","DOIUrl":"https://doi.org/10.1088/1361-6633/acfd3d","url":null,"abstract":"<p><p>Kagome magnet has been found to be a fertile ground for the search of exotic quantum states in condensed matter. Arising from the unusual geometry, the quantum interactions in the kagome lattice give rise to various quantum states, including the Chern-gapped Dirac fermion, Weyl fermion, flat band and van Hove singularity. Here we review recent advances in the study of the R166 kagome magnet (RT<sub>6</sub>E<sub>6</sub>, R = rare earths; T = transition metals; and E = Sn, Ge, etc) whose crystal structure highlights the transition-metal-based kagome lattice and rare-earth sublattice. Compared with other kagome magnets, the R166 family owns the particularly strong interplays between the<i>d</i>electrons on the kagome site and the localized<i>f</i>electrons on the rare-earth site. In the form of spin-orbital coupling, exchange interaction and many-body effect, the quantum interactions play an essential role in the Berry curvature in both the reciprocal and real spaces of R166 family. We discuss the spectroscopic and transport visualization of the topological electrons hosted in the Mn kagome layer of RMn<sub>6</sub>Sn<sub>6</sub>and the various topological effects due to the quantum interactions, including the Chern-gap opening, the exchange-biased effect, the topological Hall effect and the emergent inductance. We hope this work serves as a guide for future explorations of quantum magnets.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":"86 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41154763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sylvia K Lewin, Corey E Frank, Sheng Ran, Johnpierre Paglione, Nicholas P Butch
{"title":"A review of UTe<sub>2</sub>at high magnetic fields.","authors":"Sylvia K Lewin, Corey E Frank, Sheng Ran, Johnpierre Paglione, Nicholas P Butch","doi":"10.1088/1361-6633/acfb93","DOIUrl":"10.1088/1361-6633/acfb93","url":null,"abstract":"<p><p>Uranium ditelluride (UTe<sub>2</sub>) is recognized as a host material to unconventional spin-triplet superconductivity, but it also exhibits a wealth of additional unusual behavior at high magnetic fields. One of the most prominent signatures of the unconventional superconductivity is a large and anisotropic upper critical field that exceeds the paramagnetic limit. This superconductivity survives to 35 T and is bounded by a discontinuous magnetic transition, which itself is also field-direction-dependent. A different, reentrant superconducting phase emerges only on the high-field side of the magnetic transition, in a range of angles between the crystallographic<i>b</i>and<i>c</i>axes. This review discusses the current state of knowledge of these high-field phases, the high-field behavior of the heavy fermion normal state, and other phases that are stabilized by applied pressure.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":"86 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41158952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High harmonic generation in solids: particle and wave perspectives.","authors":"Liang Li, Pengfei Lan, Xiaosong Zhu, Peixiang Lu","doi":"10.1088/1361-6633/acf144","DOIUrl":"10.1088/1361-6633/acf144","url":null,"abstract":"<p><p>High harmonic generation (HHG) from gas-phase atoms (or molecules) has opened up a new frontier in ultrafast optics, where attosecond time resolution and angstrom spatial resolution are accessible. The fundamental physical pictures of HHG are always explained by the laser-induced recollision of particle-like electron motion, which lay the foundation of attosecond spectroscopy. In recent years, HHG has also been observed in solids. One can expect the extension of attosecond spectroscopy to the condensed matter if a description capable of resolving the ultrafast dynamics is provided. Thus, a large number of theoretical studies have been proposed to understand the underlying physics of solid HHG. Here, we revisit the recollision picture in solid HHG and show some challenges of current particle-perspective methods, and present the recently developed wave-perspective Huygens-Fresnel picture for understanding dynamical systems within the ambit of strong-field physics.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10396143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Speed limits and locality in many-body quantum dynamics.","authors":"Chi-Fang Anthony Chen, Andrew Lucas, Chao Yin","doi":"10.1088/1361-6633/acfaae","DOIUrl":"10.1088/1361-6633/acfaae","url":null,"abstract":"<p><p>We review the mathematical speed limits on quantum information processing in many-body systems. After the proof of the Lieb-Robinson Theorem in 1972, the past two decades have seen substantial developments in its application to other questions, such as the simulatability of quantum systems on classical or quantum computers, the generation of entanglement, and even the properties of ground states of gapped systems. Moreover, Lieb-Robinson bounds have been extended in non-trivial ways, to demonstrate speed limits in systems with power-law interactions or interacting bosons, and even to prove notions of locality that arise in cartoon models for quantum gravity with all-to-all interactions. We overview the progress which has occurred, highlight the most promising results and techniques, and discuss some central outstanding questions which remain open. To help bring newcomers to the field up to speed, we provide self-contained proofs of the field's most essential results.</p>","PeriodicalId":74666,"journal":{"name":"Reports on progress in physics. Physical Society (Great Britain)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10673060","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}