American Journal of Mathematics最新文献

筛选
英文 中文
A necessary and sufficient condition for the Darboux-Treibich-Verdier potential with its spectrum contained in ℝ Darboux-Treibich—Verdier势的一个充要条件ℝ
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2022-06-01 DOI: 10.1353/ajm.2022.0017
Zhijie Chen, Erjuan Fu, Changshou Lin
{"title":"A necessary and sufficient condition for the Darboux-Treibich-Verdier potential with its spectrum contained in ℝ","authors":"Zhijie Chen, Erjuan Fu, Changshou Lin","doi":"10.1353/ajm.2022.0017","DOIUrl":"https://doi.org/10.1353/ajm.2022.0017","url":null,"abstract":"abstract:In this paper, we study the spectrum of the complex Hill operator $L={d^2over dx^2}+q(x;tau)$ in $L^2(Bbb{R},Bbb{C})$ with the Darboux-Treibich-Verdier potential $$ q(x;tau):=-sum_{k=0}^{3}n_{k}(n_{k}+1)wpleft(x+z_0+{omega_kover 2};tauright), $$ where $n_kinBbb{Z}_{geq 0}$ with $max n_kgeq 1$ and $z_0inBbb{C}$ is chosen such that $q(x;tau)$ has no singularities on $Bbb{R}$. For any fixed $tauin iBbb{R}_{>0}$, we give a necessary and sufficient condition on $(n_0,n_1,n_2,n_3)$ to guarantee that the spectrum $sigma(L)$ is $$ sigma(L)=big(-infty, E_{2g}big]cupbig[E_{2g-1},E_{2g-2}big]cupcdotscup[E_1,E_0],quad E_jinBbb{R}, $$ and hence generalizes Ince's remarkable result in 1940 for the Lam'{e} potential to the Darboux-Treibich-Verdier potential. We also determine the number of (anti)periodic eigenvalues in each bounded interval $(E_{2j-1},E_{2j-2})$, which generalizes the recent result by Haese-Hill et al., who studied the Lam'{e} case $n_1=n_2=n_3=0$.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"144 1","pages":"851 - 872"},"PeriodicalIF":1.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42068992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-time dynamics of coherent states in strong magnetic fields 强磁场中相干态的长时间动力学
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2021-12-04 DOI: 10.1353/ajm.2021.0045
Gr'egory Boil, San Vũ Ngọc
{"title":"Long-time dynamics of coherent states in strong magnetic fields","authors":"Gr'egory Boil, San Vũ Ngọc","doi":"10.1353/ajm.2021.0045","DOIUrl":"https://doi.org/10.1353/ajm.2021.0045","url":null,"abstract":"abstract:We consider the Schr\"odinger evolution of strongly localized wave packets under the magnetic Laplacian in the plane $Bbb{R}^2$. When the initial energy is low, we obtain a precise control, in Schwartz seminorms, of the propagated states for times of order $1/hbar$, where $hbar$ is Planck's constant. In this semiclassical regime, we prove that the initial particle will always split into multiple coherent states, each one following the average dynamics of the guiding center motion but at its own speed, demonstrating a purely quantum ``ubiquity'' phenomenon.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"143 1","pages":"1747 - 1789"},"PeriodicalIF":1.7,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46294862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Corrigendum to "Classification of Varieties with canonical curve section via Gaussian maps on canonical curves" “通过规范曲线上的高斯映射对具有规范曲线截面的品种进行分类”的勘误表
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2021-12-04 DOI: 10.1353/ajm.2021.0042
C. Ciliberto, A. Lopez, R. Miranda
{"title":"Corrigendum to \"Classification of Varieties with canonical curve section via Gaussian maps on canonical curves\"","authors":"C. Ciliberto, A. Lopez, R. Miranda","doi":"10.1353/ajm.2021.0042","DOIUrl":"https://doi.org/10.1353/ajm.2021.0042","url":null,"abstract":"<p>abstract:</p><p>We correct a mistake in the statement and proof of <related-article href=\"/article/773\" related-article-type=\"corrected-article\" xmlns:xlink=\"http://www.w3.org/1999/xlink\">Lemma 2.3(d)</related-article> in [{it Amer. J. Math.} {bf 120} (1998), no. 1, 1--21]. This in turn implies a change in Table 2.14.</p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"143 1","pages":"1661 - 1663"},"PeriodicalIF":1.7,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47472555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Voronoï summation for GLn: collusion between level and modulus Voronoï GLn的求和:水平与模的合谋
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2021-10-15 DOI: 10.1353/ajm.2021.0034
A. Corbett
{"title":"Voronoï summation for GLn: collusion between level and modulus","authors":"A. Corbett","doi":"10.1353/ajm.2021.0034","DOIUrl":"https://doi.org/10.1353/ajm.2021.0034","url":null,"abstract":"Abstract:We investigate the Vorono\"{i} summation problem for ${rm GL}_n$ in the level aspect for $ngeq 2$. Of particular interest are those primes at which the level and modulus are jointly ramified, a common occurrence in analytic number theory when using techniques such as the Petersson trace formula. Building on previous legacies, our formula stands as the most general of its kind; in particular we extend the results of Ichino-Templier. We also give classical refinements of our formula and study the $p$-adic generalisations of the Bessel transform.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"143 1","pages":"1361 - 1395"},"PeriodicalIF":1.7,"publicationDate":"2021-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44755952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 9
Convergence of curve shortening flow to translating soliton 曲线缩短流对平移孤子的收敛性
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2021-07-10 DOI: 10.1353/ajm.2021.0027
Beomjun Choi, K. Choi, P. Daskalopoulos
{"title":"Convergence of curve shortening flow to translating soliton","authors":"Beomjun Choi, K. Choi, P. Daskalopoulos","doi":"10.1353/ajm.2021.0027","DOIUrl":"https://doi.org/10.1353/ajm.2021.0027","url":null,"abstract":"abstract:This paper concerns with the asymptotic behavior of complete non-compact convex curves embedded in $Bbb{R}^2$ under the $alpha$-curve shortening flow for exponents $alpha>{1over 2}$. We show that any such curve having in addition its two ends asymptotic to two parallel lines, converges under $alpha$-curve shortening flow to the unique translating soliton whose ends are asymptotic to the same parallel lines. This is a new result even in the standard case $alpha=1$, and we prove for all exponents up to the critical case $alpha>{1over 2}$.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"143 1","pages":"1043 - 1077"},"PeriodicalIF":1.7,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1353/ajm.2021.0027","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"66914873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Infinite time blow-up for half-harmonic map flow from R into S1 从R到S1的半调和映射流的无限时间爆破
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2021-07-10 DOI: 10.1353/ajm.2021.0031
Y. Sire, Juncheng Wei, Youquan Zheng
{"title":"Infinite time blow-up for half-harmonic map flow from R into S1","authors":"Y. Sire, Juncheng Wei, Youquan Zheng","doi":"10.1353/ajm.2021.0031","DOIUrl":"https://doi.org/10.1353/ajm.2021.0031","url":null,"abstract":"abstract:We study infinite time blow-up phenomenon for the half-harmonic map flow $$ casesno{ u_t=-(-Delta)^{{1over 2}}u+bigg({1over 2pi}int_{Bbb{R}}{|u(x)-u(s)|^2over |x-s|^2}dsbigg)u&quad {rm in} Bbb{R}times(0,infty),cr u(cdot,0)=u_0&quad {rm in} Bbb{R}, } $$ for a smooth function $u:Bbb{R}times [0,infty)toBbb{S}^1$. Let $q_1,ldots,q_k$ be distinct points in $Bbb{R}$, there exist a smooth initial datum $u_0$ and smooth functions $xi_j(t)to q_j$, $0<mu_j(t)to 0$, as $tto+infty$, $j=1,ldots,k$, such that there exists a smooth solution $u_q$ of Problem (0.1) of the form $$ u_q=omega_infty+sum_{j=1}^kBigg(omegabigg({x-xi_j(t)over mu_j(t)}bigg)-omega_inftyBigg)+theta(x,t), $$ where $omega$ is the canonical least energy half-harmonic map, $omega_infty=big({0atop 1}big)$, $theta(x,t)to 0$ as $tto+infty$, uniformly away from the points $q_j$. In addition, the parameter functions $mu_j(t)$ decay to $0$ exponentially.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"143 1","pages":"1261 - 1335"},"PeriodicalIF":1.7,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1353/ajm.2021.0031","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44364641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Boundary unique continuation for a class of elliptic equations 一类椭圆型方程的边界唯一延拓
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2021-06-08 DOI: 10.1353/AJM.2021.0019
S. Berhanu
{"title":"Boundary unique continuation for a class of elliptic equations","authors":"S. Berhanu","doi":"10.1353/AJM.2021.0019","DOIUrl":"https://doi.org/10.1353/AJM.2021.0019","url":null,"abstract":"abstract:We establish results on unique continuation at the boundary for the solutions of real analytic elliptic partial differential equations of the form $Lu=Delta u+a(x,y)partial_{x}u+b(x,y)partial_{y}u+c(x,y)u=0$ in two dimensions.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"143 1","pages":"783 - 810"},"PeriodicalIF":1.7,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1353/AJM.2021.0019","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43029825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
In Memoriam: J. Michael Boardman 1938–2021 纪念:j·迈克尔·博德曼1938-2021
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2021-06-08 DOI: 10.1353/ajm.2021.0015
Jingjun Han, Zhan Li, Lu Qi, Riccardo Brasca, Giovanni Rosso, Shanlin Huang, A. Soffer, S. Berhanu, H. Fan, Lei Ni, Qingsong Wang, F. Zheng, H. Grobner, Jie Lin, H. Gimperlein, M. Goffeng, P. Freitas, R. Laugesen, Richard Aoun, Cagri Sert
{"title":"In Memoriam: J. Michael Boardman 1938–2021","authors":"Jingjun Han, Zhan Li, Lu Qi, Riccardo Brasca, Giovanni Rosso, Shanlin Huang, A. Soffer, S. Berhanu, H. Fan, Lei Ni, Qingsong Wang, F. Zheng, H. Grobner, Jie Lin, H. Gimperlein, M. Goffeng, P. Freitas, R. Laugesen, Richard Aoun, Cagri Sert","doi":"10.1353/ajm.2021.0015","DOIUrl":"https://doi.org/10.1353/ajm.2021.0015","url":null,"abstract":"abstract:We show that the log canonical threshold polytopes of varieties with log canonical singularities satisfy the ascending chain condition.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"143 1","pages":"1010 - 681 - 714 - 715 - 751 - 753 - 781 - 783 - 810 - 811 - 832 - 833 - 857 - 859 - 937 - 939 - 967"},"PeriodicalIF":1.7,"publicationDate":"2021-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1353/ajm.2021.0015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44668853","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimal lower bounds for first eigenvalues of Riemann surfaces for large genus 大亏格的Riemann曲面第一特征值的最优下界
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2021-03-23 DOI: 10.1353/ajm.2022.0024
Yunhui Wu, Yuhao Xue
{"title":"Optimal lower bounds for first eigenvalues of Riemann surfaces for large genus","authors":"Yunhui Wu, Yuhao Xue","doi":"10.1353/ajm.2022.0024","DOIUrl":"https://doi.org/10.1353/ajm.2022.0024","url":null,"abstract":"Abstract:In this article we study the first eigenvalues of closed Riemann surfaces for large genus. We show that for every closed Riemann surface $X_g$ of genus $g$ $(ggeq 2)$, the first eigenvalue of $X_g$ is greater than ${cal L}_1(X_g)over g^2$ up to a uniform positive constant multiplication. Where ${cal L}_1(X_g)$ is the shortest length of multi closed curves separating $X_g$. Moreover,we also show that this new lower bound is optimal as $gtoinfty$.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"144 1","pages":"1087 - 1114"},"PeriodicalIF":1.7,"publicationDate":"2021-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42532870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Notification of error: Multiparameter Riesz commutators 错误通知:多参数Riesz换向器
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2021-03-16 DOI: 10.1353/AJM.2021.0009
M. Lacey, S. Petermichl, J. Pipher, B. Wick
{"title":"Notification of error: Multiparameter Riesz commutators","authors":"M. Lacey, S. Petermichl, J. Pipher, B. Wick","doi":"10.1353/AJM.2021.0009","DOIUrl":"https://doi.org/10.1353/AJM.2021.0009","url":null,"abstract":"abstract:This brief note describes an error in the following paper: Multiparameter Riesz commutators, {it Amer. J. Math.} {bf 131} (2009), no. 3, 731--769.A correction of this error seems to require new ideas, and has not been produced as of this note.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"143 1","pages":"333 - 334"},"PeriodicalIF":1.7,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1353/AJM.2021.0009","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46691386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信