{"title":"从R到S1的半调和映射流的无限时间爆破","authors":"Y. Sire, Juncheng Wei, Youquan Zheng","doi":"10.1353/ajm.2021.0031","DOIUrl":null,"url":null,"abstract":"abstract:We study infinite time blow-up phenomenon for the half-harmonic map flow $$ \\casesno{ u_t=-(-\\Delta)^{{1\\over 2}}u+\\bigg({1\\over 2\\pi}\\int_{\\Bbb{R}}{|u(x)-u(s)|^2\\over |x-s|^2}ds\\bigg)u&\\quad {\\rm in}\\ \\Bbb{R}\\times(0,\\infty),\\cr u(\\cdot,0)=u_0&\\quad {\\rm in}\\ \\Bbb{R}, } $$ for a smooth function $u:\\Bbb{R}\\times [0,\\infty)\\to\\Bbb{S}^1$. Let $q_1,\\ldots,q_k$ be distinct points in $\\Bbb{R}$, there exist a smooth initial datum $u_0$ and smooth functions $\\xi_j(t)\\to q_j$, $0<\\mu_j(t)\\to 0$, as $t\\to+\\infty$, $j=1,\\ldots,k$, such that there exists a smooth solution $u_q$ of Problem (0.1) of the form $$ u_q=\\omega_\\infty+\\sum_{j=1}^k\\Bigg(\\omega\\bigg({x-\\xi_j(t)\\over \\mu_j(t)}\\bigg)-\\omega_\\infty\\Bigg)+\\theta(x,t), $$ where $\\omega$ is the canonical least energy half-harmonic map, $\\omega_\\infty=\\big({0\\atop 1}\\big)$, $\\theta(x,t)\\to 0$ as $t\\to+\\infty$, uniformly away from the points $q_j$. In addition, the parameter functions $\\mu_j(t)$ decay to $0$ exponentially.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"143 1","pages":"1261 - 1335"},"PeriodicalIF":1.7000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1353/ajm.2021.0031","citationCount":"16","resultStr":"{\"title\":\"Infinite time blow-up for half-harmonic map flow from R into S1\",\"authors\":\"Y. Sire, Juncheng Wei, Youquan Zheng\",\"doi\":\"10.1353/ajm.2021.0031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"abstract:We study infinite time blow-up phenomenon for the half-harmonic map flow $$ \\\\casesno{ u_t=-(-\\\\Delta)^{{1\\\\over 2}}u+\\\\bigg({1\\\\over 2\\\\pi}\\\\int_{\\\\Bbb{R}}{|u(x)-u(s)|^2\\\\over |x-s|^2}ds\\\\bigg)u&\\\\quad {\\\\rm in}\\\\ \\\\Bbb{R}\\\\times(0,\\\\infty),\\\\cr u(\\\\cdot,0)=u_0&\\\\quad {\\\\rm in}\\\\ \\\\Bbb{R}, } $$ for a smooth function $u:\\\\Bbb{R}\\\\times [0,\\\\infty)\\\\to\\\\Bbb{S}^1$. Let $q_1,\\\\ldots,q_k$ be distinct points in $\\\\Bbb{R}$, there exist a smooth initial datum $u_0$ and smooth functions $\\\\xi_j(t)\\\\to q_j$, $0<\\\\mu_j(t)\\\\to 0$, as $t\\\\to+\\\\infty$, $j=1,\\\\ldots,k$, such that there exists a smooth solution $u_q$ of Problem (0.1) of the form $$ u_q=\\\\omega_\\\\infty+\\\\sum_{j=1}^k\\\\Bigg(\\\\omega\\\\bigg({x-\\\\xi_j(t)\\\\over \\\\mu_j(t)}\\\\bigg)-\\\\omega_\\\\infty\\\\Bigg)+\\\\theta(x,t), $$ where $\\\\omega$ is the canonical least energy half-harmonic map, $\\\\omega_\\\\infty=\\\\big({0\\\\atop 1}\\\\big)$, $\\\\theta(x,t)\\\\to 0$ as $t\\\\to+\\\\infty$, uniformly away from the points $q_j$. In addition, the parameter functions $\\\\mu_j(t)$ decay to $0$ exponentially.\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":\"143 1\",\"pages\":\"1261 - 1335\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1353/ajm.2021.0031\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2021.0031\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2021.0031","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Infinite time blow-up for half-harmonic map flow from R into S1
abstract:We study infinite time blow-up phenomenon for the half-harmonic map flow $$ \casesno{ u_t=-(-\Delta)^{{1\over 2}}u+\bigg({1\over 2\pi}\int_{\Bbb{R}}{|u(x)-u(s)|^2\over |x-s|^2}ds\bigg)u&\quad {\rm in}\ \Bbb{R}\times(0,\infty),\cr u(\cdot,0)=u_0&\quad {\rm in}\ \Bbb{R}, } $$ for a smooth function $u:\Bbb{R}\times [0,\infty)\to\Bbb{S}^1$. Let $q_1,\ldots,q_k$ be distinct points in $\Bbb{R}$, there exist a smooth initial datum $u_0$ and smooth functions $\xi_j(t)\to q_j$, $0<\mu_j(t)\to 0$, as $t\to+\infty$, $j=1,\ldots,k$, such that there exists a smooth solution $u_q$ of Problem (0.1) of the form $$ u_q=\omega_\infty+\sum_{j=1}^k\Bigg(\omega\bigg({x-\xi_j(t)\over \mu_j(t)}\bigg)-\omega_\infty\Bigg)+\theta(x,t), $$ where $\omega$ is the canonical least energy half-harmonic map, $\omega_\infty=\big({0\atop 1}\big)$, $\theta(x,t)\to 0$ as $t\to+\infty$, uniformly away from the points $q_j$. In addition, the parameter functions $\mu_j(t)$ decay to $0$ exponentially.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.