曲线缩短流对平移孤子的收敛性

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Beomjun Choi, K. Choi, P. Daskalopoulos
{"title":"曲线缩短流对平移孤子的收敛性","authors":"Beomjun Choi, K. Choi, P. Daskalopoulos","doi":"10.1353/ajm.2021.0027","DOIUrl":null,"url":null,"abstract":"abstract:This paper concerns with the asymptotic behavior of complete non-compact convex curves embedded in $\\Bbb{R}^2$ under the $\\alpha$-curve shortening flow for exponents $\\alpha>{1\\over 2}$. We show that any such curve having in addition its two ends asymptotic to two parallel lines, converges under $\\alpha$-curve shortening flow to the unique translating soliton whose ends are asymptotic to the same parallel lines. This is a new result even in the standard case $\\alpha=1$, and we prove for all exponents up to the critical case $\\alpha>{1\\over 2}$.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1353/ajm.2021.0027","citationCount":"2","resultStr":"{\"title\":\"Convergence of curve shortening flow to translating soliton\",\"authors\":\"Beomjun Choi, K. Choi, P. Daskalopoulos\",\"doi\":\"10.1353/ajm.2021.0027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"abstract:This paper concerns with the asymptotic behavior of complete non-compact convex curves embedded in $\\\\Bbb{R}^2$ under the $\\\\alpha$-curve shortening flow for exponents $\\\\alpha>{1\\\\over 2}$. We show that any such curve having in addition its two ends asymptotic to two parallel lines, converges under $\\\\alpha$-curve shortening flow to the unique translating soliton whose ends are asymptotic to the same parallel lines. This is a new result even in the standard case $\\\\alpha=1$, and we prove for all exponents up to the critical case $\\\\alpha>{1\\\\over 2}$.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1353/ajm.2021.0027\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2021.0027\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2021.0027","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

研究了嵌入在$\Bbb{R}^2$中的完全非紧凸曲线在$\alpha$-曲线缩短流下对于指数$\alpha>{1\ / 2}$的渐近行为。我们证明了任何这样的曲线在$\ α $-曲线缩短流下收敛到唯一的平移孤子,其两端渐近于同一平行线。即使在标准情况$\alpha=1$下,这也是一个新的结果,并且我们证明了所有指数直到临界情况$\alpha>{1\ / 2}$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convergence of curve shortening flow to translating soliton
abstract:This paper concerns with the asymptotic behavior of complete non-compact convex curves embedded in $\Bbb{R}^2$ under the $\alpha$-curve shortening flow for exponents $\alpha>{1\over 2}$. We show that any such curve having in addition its two ends asymptotic to two parallel lines, converges under $\alpha$-curve shortening flow to the unique translating soliton whose ends are asymptotic to the same parallel lines. This is a new result even in the standard case $\alpha=1$, and we prove for all exponents up to the critical case $\alpha>{1\over 2}$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信