American Journal of Mathematics最新文献

筛选
英文 中文
On the σκ-Nirenberg problem 关于 σκ-Nirenberg 问题
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2024-01-18 DOI: 10.1353/ajm.2024.a917542
YanYan Li, Luc Nguyen, Bo Wang
{"title":"On the σκ-Nirenberg problem","authors":"YanYan Li, Luc Nguyen, Bo Wang","doi":"10.1353/ajm.2024.a917542","DOIUrl":"https://doi.org/10.1353/ajm.2024.a917542","url":null,"abstract":"<p><p>abstract:</p><p>We consider the problem of prescribing the $sigma_k$-curvature on the standard sphere $Bbb{S}^n$ with $ngeq 3$. We prove existence and compactness theorems when $kgeq n/2$. This extends an earlier result of Chang, Han, and Yang for $n=4$ and $k=2$.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hecke algebras for tame supercuspidal types 驯服超pidal 型的赫克代数
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2024-01-18 DOI: 10.1353/ajm.2024.a917543
Kazuma Ohara
{"title":"Hecke algebras for tame supercuspidal types","authors":"Kazuma Ohara","doi":"10.1353/ajm.2024.a917543","DOIUrl":"https://doi.org/10.1353/ajm.2024.a917543","url":null,"abstract":"<p><p>abstract:</p><p>Let $F$ be a non-archimedean local field of residue characteristic $pneq 2$. Let $G$ be a connected reductive group over $F$ that splits over a tamely ramified extension of $F$. In~2001, Yu constructed types which are called {it tame supercuspidal types} and conjectured that Hecke algebras associated with these types are isomorphic to Hecke algebras associated with depth-zero types of some twisted Levi subgroups of $G$. In this paper, we prove this conjecture. We also prove that the Hecke algebra associated with a {it regular supercuspidal type} is isomorphic to the group algebra of a certain abelian group.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The density hypothesis for horizontal families of lattices 水平网格族的密度假设
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2024-01-18 DOI: 10.1353/ajm.2024.a917540
Mikołaj Fra̧czyk, Gergely Harcos, Péter Maga, Djordje Milićević
{"title":"The density hypothesis for horizontal families of lattices","authors":"Mikołaj Fra̧czyk, Gergely Harcos, Péter Maga, Djordje Milićević","doi":"10.1353/ajm.2024.a917540","DOIUrl":"https://doi.org/10.1353/ajm.2024.a917540","url":null,"abstract":"<p><p>abstract:</p><p>We prove the density hypothesis for wide families of arithmetic orbifolds arising from all division quaternion algebras over all number fields of bounded degree. Our power-saving bounds on the multiplicities of non-tempered representations are uniform in the volume and spectral aspects.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of metric behavior at spatial infinity on pointwise wave decay in the asymptotically flat stationary setting 空间无穷远处的度量行为对渐近平坦静止环境中的点波衰减的影响
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2024-01-18 DOI: 10.1353/ajm.2024.a917539
Katrina Morgan
{"title":"The effect of metric behavior at spatial infinity on pointwise wave decay in the asymptotically flat stationary setting","authors":"Katrina Morgan","doi":"10.1353/ajm.2024.a917539","DOIUrl":"https://doi.org/10.1353/ajm.2024.a917539","url":null,"abstract":"<p><p>abstract:</p><p>The current work considers solutions to the wave equation on asymptotically flat, stationary, Lorentzian spacetimes in $(1+3)$ dimensions. We investigate the relationship between the rate at which the geometry tends to flat and the pointwise decay rate of solutions. The case where the spacetime tends toward flat at a rate of $|x|^{-1}$ was studied by Tataru (2013), where a $t^{-3}$ pointwise decay rate was established. Here we extend the result to geometries tending toward flat at a rate of $|x|^{-kappa}$ and establish a pointwise decay rate of $t^{-kappa-2}$ for $kappainBbb{N}$ with $kappage 2$. We assume a weak local energy decay estimate holds, which restricts the geodesic trapping allowed on the underlying geometry. We use the resolvent to connect the time Fourier Transform of a solution to the Cauchy data. Ultimately the rate of pointwise wave decay depends on the low frequency behavior of the resolvent, which is sensitive to the rate at which the background geometry tends to flat.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global well-posedness for the radial, defocusing, nonlinear wave equation for 3 < p < 5 3 < p < 5 的径向、散焦、非线性波方程的全局拟合优度
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2024-01-18 DOI: 10.1353/ajm.2024.a917538
Benjamin Dodson
{"title":"Global well-posedness for the radial, defocusing, nonlinear wave equation for 3 < p < 5","authors":"Benjamin Dodson","doi":"10.1353/ajm.2024.a917538","DOIUrl":"https://doi.org/10.1353/ajm.2024.a917538","url":null,"abstract":"<p><p>abstract:</p><p>In this paper we continue the study of the defocusing, energy-subcritical nonlinear wave equation with radial initial data lying in the critical Sobolev space. In this case we prove scattering in the critical norm when $3&lt;p&lt;5$.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inverse problems for real principal type operators 实主型算子的逆问题
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2024-01-18 DOI: 10.1353/ajm.2024.a917541
Lauri Oksanen, Mikko Salo, Plamen Stefanov, Gunther Uhlmann
{"title":"Inverse problems for real principal type operators","authors":"Lauri Oksanen, Mikko Salo, Plamen Stefanov, Gunther Uhlmann","doi":"10.1353/ajm.2024.a917541","DOIUrl":"https://doi.org/10.1353/ajm.2024.a917541","url":null,"abstract":"<p><p>abstract:</p><p>We consider inverse boundary value problems for general real principal type differential operators. The first results state that the Cauchy data set uniquely determines the scattering relation of the operator and bicharacteristic ray transforms of lower order coefficients. We also give two different boundary determination methods for general operators, and prove global uniqueness results for determining coefficients in nonlinear real principal type equations. The article presents a unified approach for treating inverse boundary problems for transport and wave equations, and highlights the role of propagation of singularities in the solution of related inverse problems.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The moduli space of stable supercurves and its canonical line bundle 稳定超曲线的模空间及其正则线束
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2023-11-29 DOI: 10.1353/ajm.2023.a913296
Giovanni Felder, David Kazhdan, Alexander Polishchuk
{"title":"The moduli space of stable supercurves and its canonical line bundle","authors":"Giovanni Felder, David Kazhdan, Alexander Polishchuk","doi":"10.1353/ajm.2023.a913296","DOIUrl":"https://doi.org/10.1353/ajm.2023.a913296","url":null,"abstract":"<p><p>Abstract:</p><p>We prove that the moduli of stable supercurves with punctures is a smooth proper DM stack and study an analog of the Mumford's isomorphism for its canonical line bundle.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Index to Volume 145: 2023 索引卷145:2023
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2023-11-29 DOI: 10.1353/ajm.2023.a913299
{"title":"Index to Volume 145: 2023","authors":"","doi":"10.1353/ajm.2023.a913299","DOIUrl":"https://doi.org/10.1353/ajm.2023.a913299","url":null,"abstract":"<p>AMERICAN JOURNAL OF MATHEMATICS Founded in 1878 by Johns Hopkins University INDEX TO VOLUME 145 2023 PAGE AHLGREN, SCOTT, OLIVIA BECKWITH, and MARTIN RAUM. Scarcity of congruences for the partition function . . . . . . . . . . . . . . . . . . . . . . . . . . 1509 AISTLEITNER, CHRISTOPH, NICLAS TECHNAU, and AGAMEMNON ZAFEIROPOULOS. On the order of magnitude of Sudler products . 721 AN, XINLIANG, HAOYANG CHEN, and SILU YIN. Low regularity illposedness for elastic waves driven by shock formation . . . . . . . . . . . 1111 ASTORG, MATTHIEU and FABRIZIO BIANCHI. Hyperbolicity and bifurcations in holomorphic families of polynomial skew products. . . . . 861 BECKWITH, OLIVIA. See AHLGREN, SCOTT BELLAZZINI, JACOPO and DAVID RUIZ. Finite energy traveling waves for the Gross-Pitaevskii equation in the subsonic regime. . . . . . . . . . 109 BESAU, FLORIAN, THOMAS HACK, PETER PIVOVAROV, and FRANZ E. SCHUSTER. Spherical centroid bodies . . . . . . . . . . . . . . . . . . . . . . . . . . 515 BIANCHI, FABRIZIO. See ASTORG, MATTHIEU BONSANTE, FRANCESCO, GABRIELE MONDELLO, and JEAN-MARC SCHLENKER. Minimizing immersions of a hyperbolic surface in a hyperbolic 3-manifold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 995 BRUCE, CHRIS and XIN LI. On K-theoretic invariants of semigroup C∗-algebras from actions of congruence monoids. . . . . . . . . . . . . . . . 251 BUIUM, ALEXANDRU and LANCE EDWARD MILLER. Perfectoid spaces arising from arithmetic jet spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287 BULUT, AYNUR. Blow-up criteria below scaling for defocusing energysupercritical NLS and quantitative global scattering bounds. . . . . . . 543 CANTAT, SERGE, ANDRIY REGETA, and JUNYI XIE. Families of commuting automorphisms, and a characterization of the affine space . 413 CHAN, MELODY, CAREL FABER, SØREN GALATIUS, and SAM PAYNE. The Sn-equivariant top weight Euler characteristic of Mg,n . . . . . . 1549 CHEN, HAOJIE and WEIYI ZHANG. Kodaira dimensions of almost complex manifolds, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477 CHEN, HAOYANG. See AN, XINLIANG CHEN, SHIH-YU and ATSUSHI ICHINO. On Petersson norms of generic cusp forms and special values of adjoint L-functions for GSp4 . . . . 899 FABER, CAREL. See CHAN, MELODY FAOU, ERWAN and PIERRE RAPHAËL. On weakly turbulent solutions to the perturbed linear harmonic oscillator. . . . . . . . . . . . . . . . . . . . . . . . . 1465 FARAH, LUIZ GUSTAVO, JUSTIN HOLMER, SVETLANA ROUDENKO, and KAI YANG. Asymptotic stability of solitary waves of the 3D quadratic Zakharov-Kuznetsov equation . . . . . . . . . . . . . . . . . . . . . . . . 1695 FELDER, GIOVANNI, DAVID KAZHDAN, and ALEXANDER POLISHCHUK . The moduli space of stable supercurves and its canonical line bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1777 FERNÁNDEZ, ISABEL, JOSÉ A. GÁLVEZ, and PABLO MIRA.","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analysis of the critical CR GJMS operator 关键CR GJMS操作符的分析
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2023-11-29 DOI: 10.1353/ajm.2023.a913298
Yuya Takeuchi
{"title":"Analysis of the critical CR GJMS operator","authors":"Yuya Takeuchi","doi":"10.1353/ajm.2023.a913298","DOIUrl":"https://doi.org/10.1353/ajm.2023.a913298","url":null,"abstract":"<p><p>Abstract:</p><p>The critical CR GJMS operator on a strictly pseudoconvex CR manifold is a non-hypoelliptic CR invariant differential operator. We prove that, under the embeddability assumption, it is essentially self-adjoint and has closed range. Moreover, its spectrum is discrete, and the eigenspace corresponding to each non-zero eigenvalue is a finite-dimensional subspace of the space of smooth functions. As an application, we obtain a necessary and sufficient condition for the existence of a contact form with zero CR $Q$-curvature.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138543152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Quasiconformal Gauss maps and the Bernstein problem for Weingarten multigraphs Weingarten多图的拟共形高斯映射和Bernstein问题
IF 1.7 1区 数学
American Journal of Mathematics Pub Date : 2023-11-29 DOI: 10.1353/ajm.2023.a913297
Isabel Fernández, José A. Gálvez, Pablo Mira
{"title":"Quasiconformal Gauss maps and the Bernstein problem for Weingarten multigraphs","authors":"Isabel Fernández, José A. Gálvez, Pablo Mira","doi":"10.1353/ajm.2023.a913297","DOIUrl":"https://doi.org/10.1353/ajm.2023.a913297","url":null,"abstract":"<p><p>Abstract:</p><p>We prove that any complete, uniformly elliptic Weingarten surface in Euclidean $3$-space whose Gauss map image omits an open hemisphere is a cylinder or a plane. This generalizes a classical theorem by Hoffman, Osserman and Schoen for constant mean curvature surfaces. In particular, this proves that planes are the only complete, uniformly elliptic Weingarten multigraphs. We also show that this result holds for a large class of non-uniformly elliptic Weingarten equations. In particular, this solves in the affirmative the Bernstein problem for entire graphs for that class of elliptic equations. To obtain these results, we prove that planes are the only complete multigraphs with quasiconformal Gauss map and bounded second fundamental form.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信