{"title":"On the σκ-Nirenberg problem","authors":"YanYan Li, Luc Nguyen, Bo Wang","doi":"10.1353/ajm.2024.a917542","DOIUrl":"https://doi.org/10.1353/ajm.2024.a917542","url":null,"abstract":"<p><p>abstract:</p><p>We consider the problem of prescribing the $sigma_k$-curvature on the standard sphere $Bbb{S}^n$ with $ngeq 3$. We prove existence and compactness theorems when $kgeq n/2$. This extends an earlier result of Chang, Han, and Yang for $n=4$ and $k=2$.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hecke algebras for tame supercuspidal types","authors":"Kazuma Ohara","doi":"10.1353/ajm.2024.a917543","DOIUrl":"https://doi.org/10.1353/ajm.2024.a917543","url":null,"abstract":"<p><p>abstract:</p><p>Let $F$ be a non-archimedean local field of residue characteristic $pneq 2$. Let $G$ be a connected reductive group over $F$ that splits over a tamely ramified extension of $F$. In~2001, Yu constructed types which are called {it tame supercuspidal types} and conjectured that Hecke algebras associated with these types are isomorphic to Hecke algebras associated with depth-zero types of some twisted Levi subgroups of $G$. In this paper, we prove this conjecture. We also prove that the Hecke algebra associated with a {it regular supercuspidal type} is isomorphic to the group algebra of a certain abelian group.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mikołaj Fra̧czyk, Gergely Harcos, Péter Maga, Djordje Milićević
{"title":"The density hypothesis for horizontal families of lattices","authors":"Mikołaj Fra̧czyk, Gergely Harcos, Péter Maga, Djordje Milićević","doi":"10.1353/ajm.2024.a917540","DOIUrl":"https://doi.org/10.1353/ajm.2024.a917540","url":null,"abstract":"<p><p>abstract:</p><p>We prove the density hypothesis for wide families of arithmetic orbifolds arising from all division quaternion algebras over all number fields of bounded degree. Our power-saving bounds on the multiplicities of non-tempered representations are uniform in the volume and spectral aspects.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The effect of metric behavior at spatial infinity on pointwise wave decay in the asymptotically flat stationary setting","authors":"Katrina Morgan","doi":"10.1353/ajm.2024.a917539","DOIUrl":"https://doi.org/10.1353/ajm.2024.a917539","url":null,"abstract":"<p><p>abstract:</p><p>The current work considers solutions to the wave equation on asymptotically flat, stationary, Lorentzian spacetimes in $(1+3)$ dimensions. We investigate the relationship between the rate at which the geometry tends to flat and the pointwise decay rate of solutions. The case where the spacetime tends toward flat at a rate of $|x|^{-1}$ was studied by Tataru (2013), where a $t^{-3}$ pointwise decay rate was established. Here we extend the result to geometries tending toward flat at a rate of $|x|^{-kappa}$ and establish a pointwise decay rate of $t^{-kappa-2}$ for $kappainBbb{N}$ with $kappage 2$. We assume a weak local energy decay estimate holds, which restricts the geodesic trapping allowed on the underlying geometry. We use the resolvent to connect the time Fourier Transform of a solution to the Cauchy data. Ultimately the rate of pointwise wave decay depends on the low frequency behavior of the resolvent, which is sensitive to the rate at which the background geometry tends to flat.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Global well-posedness for the radial, defocusing, nonlinear wave equation for 3 < p < 5","authors":"Benjamin Dodson","doi":"10.1353/ajm.2024.a917538","DOIUrl":"https://doi.org/10.1353/ajm.2024.a917538","url":null,"abstract":"<p><p>abstract:</p><p>In this paper we continue the study of the defocusing, energy-subcritical nonlinear wave equation with radial initial data lying in the critical Sobolev space. In this case we prove scattering in the critical norm when $3<p<5$.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lauri Oksanen, Mikko Salo, Plamen Stefanov, Gunther Uhlmann
{"title":"Inverse problems for real principal type operators","authors":"Lauri Oksanen, Mikko Salo, Plamen Stefanov, Gunther Uhlmann","doi":"10.1353/ajm.2024.a917541","DOIUrl":"https://doi.org/10.1353/ajm.2024.a917541","url":null,"abstract":"<p><p>abstract:</p><p>We consider inverse boundary value problems for general real principal type differential operators. The first results state that the Cauchy data set uniquely determines the scattering relation of the operator and bicharacteristic ray transforms of lower order coefficients. We also give two different boundary determination methods for general operators, and prove global uniqueness results for determining coefficients in nonlinear real principal type equations. The article presents a unified approach for treating inverse boundary problems for transport and wave equations, and highlights the role of propagation of singularities in the solution of related inverse problems.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139500388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Giovanni Felder, David Kazhdan, Alexander Polishchuk
{"title":"The moduli space of stable supercurves and its canonical line bundle","authors":"Giovanni Felder, David Kazhdan, Alexander Polishchuk","doi":"10.1353/ajm.2023.a913296","DOIUrl":"https://doi.org/10.1353/ajm.2023.a913296","url":null,"abstract":"<p><p>Abstract:</p><p>We prove that the moduli of stable supercurves with punctures is a smooth proper DM stack and study an analog of the Mumford's isomorphism for its canonical line bundle.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of the critical CR GJMS operator","authors":"Yuya Takeuchi","doi":"10.1353/ajm.2023.a913298","DOIUrl":"https://doi.org/10.1353/ajm.2023.a913298","url":null,"abstract":"<p><p>Abstract:</p><p>The critical CR GJMS operator on a strictly pseudoconvex CR manifold is a non-hypoelliptic CR invariant differential operator. We prove that, under the embeddability assumption, it is essentially self-adjoint and has closed range. Moreover, its spectrum is discrete, and the eigenspace corresponding to each non-zero eigenvalue is a finite-dimensional subspace of the space of smooth functions. As an application, we obtain a necessary and sufficient condition for the existence of a contact form with zero CR $Q$-curvature.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138543152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Quasiconformal Gauss maps and the Bernstein problem for Weingarten multigraphs","authors":"Isabel Fernández, José A. Gálvez, Pablo Mira","doi":"10.1353/ajm.2023.a913297","DOIUrl":"https://doi.org/10.1353/ajm.2023.a913297","url":null,"abstract":"<p><p>Abstract:</p><p>We prove that any complete, uniformly elliptic Weingarten surface in Euclidean $3$-space whose Gauss map image omits an open hemisphere is a cylinder or a plane. This generalizes a classical theorem by Hoffman, Osserman and Schoen for constant mean curvature surfaces. In particular, this proves that planes are the only complete, uniformly elliptic Weingarten multigraphs. We also show that this result holds for a large class of non-uniformly elliptic Weingarten equations. In particular, this solves in the affirmative the Bernstein problem for entire graphs for that class of elliptic equations. To obtain these results, we prove that planes are the only complete multigraphs with quasiconformal Gauss map and bounded second fundamental form.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138508590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}