{"title":"Analysis of the critical CR GJMS operator","authors":"Yuya Takeuchi","doi":"10.1353/ajm.2023.a913298","DOIUrl":null,"url":null,"abstract":"<p><p>Abstract:</p><p>The critical CR GJMS operator on a strictly pseudoconvex CR manifold is a non-hypoelliptic CR invariant differential operator. We prove that, under the embeddability assumption, it is essentially self-adjoint and has closed range. Moreover, its spectrum is discrete, and the eigenspace corresponding to each non-zero eigenvalue is a finite-dimensional subspace of the space of smooth functions. As an application, we obtain a necessary and sufficient condition for the existence of a contact form with zero CR $Q$-curvature.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2023.a913298","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
Abstract:
The critical CR GJMS operator on a strictly pseudoconvex CR manifold is a non-hypoelliptic CR invariant differential operator. We prove that, under the embeddability assumption, it is essentially self-adjoint and has closed range. Moreover, its spectrum is discrete, and the eigenspace corresponding to each non-zero eigenvalue is a finite-dimensional subspace of the space of smooth functions. As an application, we obtain a necessary and sufficient condition for the existence of a contact form with zero CR $Q$-curvature.
期刊介绍:
The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.