关键CR GJMS操作符的分析

IF 1.7 1区 数学 Q1 MATHEMATICS
Yuya Takeuchi
{"title":"关键CR GJMS操作符的分析","authors":"Yuya Takeuchi","doi":"10.1353/ajm.2023.a913298","DOIUrl":null,"url":null,"abstract":"<p><p>Abstract:</p><p>The critical CR GJMS operator on a strictly pseudoconvex CR manifold is a non-hypoelliptic CR invariant differential operator. We prove that, under the embeddability assumption, it is essentially self-adjoint and has closed range. Moreover, its spectrum is discrete, and the eigenspace corresponding to each non-zero eigenvalue is a finite-dimensional subspace of the space of smooth functions. As an application, we obtain a necessary and sufficient condition for the existence of a contact form with zero CR $Q$-curvature.</p></p>","PeriodicalId":7453,"journal":{"name":"American Journal of Mathematics","volume":"57 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Analysis of the critical CR GJMS operator\",\"authors\":\"Yuya Takeuchi\",\"doi\":\"10.1353/ajm.2023.a913298\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Abstract:</p><p>The critical CR GJMS operator on a strictly pseudoconvex CR manifold is a non-hypoelliptic CR invariant differential operator. We prove that, under the embeddability assumption, it is essentially self-adjoint and has closed range. Moreover, its spectrum is discrete, and the eigenspace corresponding to each non-zero eigenvalue is a finite-dimensional subspace of the space of smooth functions. As an application, we obtain a necessary and sufficient condition for the existence of a contact form with zero CR $Q$-curvature.</p></p>\",\"PeriodicalId\":7453,\"journal\":{\"name\":\"American Journal of Mathematics\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1353/ajm.2023.a913298\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1353/ajm.2023.a913298","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

严格伪凸CR流形上的临界CR GJMS算子是非半椭圆CR不变微分算子。我们证明了在可嵌入假设下,它本质上是自伴随的,并且具有封闭的范围。它的谱是离散的,每个非零特征值所对应的特征空间是光滑函数空间的有限维子空间。作为应用,得到了零CR $Q$曲率的接触形式存在的充分必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of the critical CR GJMS operator

Abstract:

The critical CR GJMS operator on a strictly pseudoconvex CR manifold is a non-hypoelliptic CR invariant differential operator. We prove that, under the embeddability assumption, it is essentially self-adjoint and has closed range. Moreover, its spectrum is discrete, and the eigenspace corresponding to each non-zero eigenvalue is a finite-dimensional subspace of the space of smooth functions. As an application, we obtain a necessary and sufficient condition for the existence of a contact form with zero CR $Q$-curvature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.20
自引率
0.00%
发文量
35
审稿时长
24 months
期刊介绍: The oldest mathematics journal in the Western Hemisphere in continuous publication, the American Journal of Mathematics ranks as one of the most respected and celebrated journals in its field. Published since 1878, the Journal has earned its reputation by presenting pioneering mathematical papers. It does not specialize, but instead publishes articles of broad appeal covering the major areas of contemporary mathematics. The American Journal of Mathematics is used as a basic reference work in academic libraries, both in the United States and abroad.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信