Zihao Liu, Jing Huang, Allan Rocha, Jim Malmros, Jerry Zhang
{"title":"Importance-Based Ray Strategies for Dynamic Diffuse Global Illumination","authors":"Zihao Liu, Jing Huang, Allan Rocha, Jim Malmros, Jerry Zhang","doi":"10.1145/3585500","DOIUrl":"https://doi.org/10.1145/3585500","url":null,"abstract":"In this paper, we propose a first and efficient ray allocation technique for Dynamic Diffuse Global Illumination (DDGI) using Multiple Importance Sampling (MIS). Our technique, IS-DDGI, extends DDGI by incorporating a set of importance-based ray strategies that analyze, allocate, and manage ray resources on the GPU. We combine these strategies with an adaptive historical and temporal frame-to-frame analysis for an effective reuse of information and a set of GPU-based optimizations for speeding up ray allocation and reducing memory bandwidth. Our IS-DDGI achieves similar visual quality to DDGI with a speedup of 1.27x to 2.47x in total DDGI time and 3.29x to 6.64x in probes ray tracing time over previous technique [Majercik et al. 2021]. Most speedup of IS-DDGI comes from probes ray tracing speedup.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":" ","pages":"1 - 20"},"PeriodicalIF":0.0,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44870970","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Fast Position-based Multi-Agent Group Dynamics","authors":"Tomer Weiss","doi":"10.1145/3585507","DOIUrl":"https://doi.org/10.1145/3585507","url":null,"abstract":"We present a novel method for simulating groups moving in formation. Recent approaches for simulating group motion operate via forces or velocity-connections. While such approaches are effective for several cases, they do not easily scale to large crowds, irregular formation shapes, and they provide limited fine-grain control over agent and group behaviors. In this paper we propose a novel approach that addresses these difficulties via positional constraints, with a position-based dynamics solver. Our approach allows real-time, interactive simulation of a variety of group numbers, formation shapes, and scenarios of up to thousands of agents.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":"6 1","pages":"1 - 15"},"PeriodicalIF":0.0,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47559795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Efficient Spatial Resampling Using the PDF Similarity","authors":"Yusuke Tokuyoshi","doi":"10.1145/3585501","DOIUrl":"https://doi.org/10.1145/3585501","url":null,"abstract":"In real-time rendering, spatiotemporal reservoir resampling (ReSTIR) is a powerful technique to increase the number of candidate samples for resampled importance sampling. However, reusing spatiotemporal samples is not always efficient when target PDFs for the reused samples are dissimilar to the integrand. Target PDFs are often spatially different for highly detailed scenes due to geometry edges, normal maps, spatially varying materials, and shadow edges. This paper introduces a new method of rejecting spatial reuse based on the similarity of PDF shapes for single-bounce path connections (e.g., direct illumination). While existing rejection methods for ReSTIR do not support arbitrary materials and shadow edges, our PDF similarity takes them into account because target PDFs include BSDFs and shadows. In this paper, we present a rough estimation of PDF shapes using von Mises--Fisher distributions and temporal resampling. We also present a stable combination of our rejection method and the existing rejection method, considering estimation errors due to temporal disocclusions and moving light sources. This combination efficiently reduces the error around shadow edges with temporal continuities. By using our method for a ReSTIR variant that reuses shadow ray visibility for the integrand, we can reduce the number of shadow rays while preserving shadow edges.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":" ","pages":"1 - 19"},"PeriodicalIF":0.0,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42827471","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Subspace Culling for Ray-Box Intersection","authors":"A. Yoshimura, T. Harada","doi":"10.1145/3585503","DOIUrl":"https://doi.org/10.1145/3585503","url":null,"abstract":"Ray tracing is an essential operation for realistic image synthesis. The acceleration of ray tracing has been studied for a long period of time because algorithms such as light transport simulations require a large amount of ray tracing. One of the major approaches to accelerate the intersections is to use bounding volumes for early pruning for primitives in the volume. The axis-aligned bounding box is a popular bounding volume for ray tracing because of its simplicity and efficiency. However, the conservative bounding volume may produce extra empty space in addition to its content. Especially, primitives that are thin and diagonal to the axis give false-positive hits on the box volume due to the extra space. Although more complex bounding volumes such as oriented bounding boxes may reduce more false-positive hits, they are computationally expensive. In this paper, we propose a novel culling approach to reduce false-positive hits for the bounding box by embedding a binary voxel data structure to the volume. As a ray is represented as a conservative voxel volume as well in our approach, the ray--voxel intersection is cheaply done by bitwise AND operations. Our method is applicable to hierarchical data structures such as bounding volume hierarchy (BVH). It reduces false-positive hits due to the ray--box test and reduces the number of intersections during the traversal of BVH in ray tracing. We evaluate the reduction of intersections with several scenes and show the possibility of performance improvement despite the culling overhead. We also introduce a compression approach with a lookup table for our voxel data. We show that our compressed voxel data achieves significant false-positive reductions with a small amount of memory.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":" ","pages":"1 - 15"},"PeriodicalIF":0.0,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49637869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Real-Time Sand Dune Simulation","authors":"B. Taylor, J. Keyser","doi":"10.1145/3585510","DOIUrl":"https://doi.org/10.1145/3585510","url":null,"abstract":"We present a novel real-time method for simulating aeolian sand transport and dune propagation. Our method is a GPU-based extension of the Desertscapes Simulation sand propagation model to additionally capture echo dunes and obstacle interaction. We validate our method by comparing it against an existing study of echo dune evolution in a wind tunnel environment. Additionally, we demonstrate the significantly improved performance of our method via comparison to the existing, CPU-based method. Lastly, we validate our method by comparing it to a published study exploring the evolution of dunes in a bidirectional wind environment driven by an offline, cellular autonoma based method. We conclude that the presented method is a simple and helpful tool for users in multiple domains who wish to capture physically plausible desertscape evolution in real time.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":"67 4","pages":"1 - 18"},"PeriodicalIF":0.0,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41269529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"G2 Blending Ball B-Spline Curve by B-Spline","authors":"Yuming Zhao, Zhongke Wu, Xingce Wang, Xinyu Liu","doi":"10.1145/3585504","DOIUrl":"https://doi.org/10.1145/3585504","url":null,"abstract":"Blending two Ball B-Spline Curves(BBSC) is an important tool in modeling tubular objects. In this paper, we propose a new BBSC blending method. Our method has the following three main contributions: First, we use BBSC instead of ball Bézier to model the blending part to expand the solution space and make the resultant BBSC have better fairness. Second, we consider both the skeleton line and radius of BBSC, which makes the skeleton line and radius consistent. Thirdly, we propose a two-step optimization process to solve the problem of excessive amount of parameters brought by expanding the solution space, so that our method satisfies the real-time.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":"6 1","pages":"1 - 16"},"PeriodicalIF":0.0,"publicationDate":"2023-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41798735","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"ManiLoco: A VR-Based Locomotion Method for Concurrent Object Manipulation.","authors":"Dayu Wan, Xiaolei Guo, Jiahui Dong, Christos Mousas, Yingjie Chen","doi":"10.1145/3585502","DOIUrl":"https://doi.org/10.1145/3585502","url":null,"abstract":"<p><p>The use of virtual reality (VR) in laboratory skill training is rapidly increasing. In such applications, users often need to explore a large virtual environment within a limited physical space while completing a series of hand-based tasks (e.g., object manipulation). However, the most widely used controller-based teleport methods may conflict with the users' hand operation and result in a higher cognitive load, negatively affecting their training experiences. To alleviate these limitations, we designed and implemented a locomotion method called ManiLoco to enable hands-free interaction and thus avoid conflicts and interruptions from other tasks. Users can teleport to a remote object's position by taking a step toward the object while looking at it. We evaluated ManiLoco and compared it with state-of-the-art Point & Teleport in a within-subject experiment with 16 participants. The results confirmed the viability of our foot- and head-based approach and better support concurrent object manipulation in VR training tasks. Furthermore, our locomotion method does not require any additional hardware. It solely relies on the VR head-mounted display (HMD) and our implementation of detecting the user's stepping activity, and it can be easily applied to any VR application as a plugin.</p>","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":"6 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10249678/pdf/nihms-1905180.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9619785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kyu Beom Han, Olivia G. Odenthal, Woo Jae Kim, S.-E. Yoon
{"title":"Pixel-wise Guidance for Utilizing Auxiliary Features in Monte Carlo Denoising","authors":"Kyu Beom Han, Olivia G. Odenthal, Woo Jae Kim, S.-E. Yoon","doi":"10.1145/3585505","DOIUrl":"https://doi.org/10.1145/3585505","url":null,"abstract":"Auxiliary features such as geometric buffers (G-buffers) and path descriptors (P-buffers) have been shown to significantly improve Monte Carlo (MC) denoising. However, recent approaches implicitly learn to exploit auxiliary features for denoising, which could lead to insufficient utilization of each type of auxiliary features. To overcome such an issue, we propose a denoising framework that relies on an explicit pixel-wise guidance for utilizing auxiliary features. First, we train two denoisers, each trained by a different auxiliary feature (i.e., G-buffers or P-buffers). Then we design our ensembling network to obtain per-pixel ensembling weight maps, which represent pixel-wise guidance for which auxiliary feature should be dominant at reconstructing each individual pixel and use them to ensemble the two denoised results of our denosiers. We also propagate our pixel-wise guidance to the denoisers by jointly training the denoisers and the ensembling network, further guiding the denoisers to focus on regions where G-buffers or P-buffers are relatively important for denoising. Our result and show considerable improvement in denoising performance compared to the baseline denoising model using both G-buffers and P-buffers. The source code is available at https://github.com/qbhan/GuidanceMCDenoising.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":"6 1","pages":"1 - 19"},"PeriodicalIF":0.0,"publicationDate":"2023-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42627915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"DiffXPBD","authors":"Tuur Stuyck, Hsiao-yu Chen","doi":"10.1145/3606923","DOIUrl":"https://doi.org/10.1145/3606923","url":null,"abstract":"We present DiffXPBD, a novel and efficient analytical formulation for the differentiable position-based simulation of compliant constrained dynamics (XPBD). Our proposed method allows computation of gradients of numerous parameters with respect to a goal function simultaneously leveraging a performant simulation model. The method is efficient, thus enabling differentiable simulations of high resolution geometries and degrees of freedom (DoFs). Collisions are naturally included in the framework. Our differentiable model allows a user to easily add additional optimization variables. Every control variable gradient requires the computation of only a few partial derivatives which can be computed using automatic differentiation code. We demonstrate the efficacy of the method with examples such as elastic cloth and volumetric material parameter estimation, initial value optimization, optimizing for underlying body shape and pose by only observing the clothing, and optimizing a time-varying external force sequence to match sparse keyframe shapes at specific times. Our approach demonstrates excellent efficiency and we demonstrate this on high resolution meshes with optimizations involving over 26 million degrees of freedom. Making an existing solver differentiable requires only a few modifications and the model is compatible with both modern CPU and GPU multi-core hardware.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":"6 1","pages":"1 - 14"},"PeriodicalIF":0.0,"publicationDate":"2023-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48974283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clément Jambon, B. Kerbl, Georgios Kopanas, Stavros Diolatzis, Thomas Leimkühler, G. Drettakis
{"title":"NeRFshop: Interactive Editing of Neural Radiance Fields","authors":"Clément Jambon, B. Kerbl, Georgios Kopanas, Stavros Diolatzis, Thomas Leimkühler, G. Drettakis","doi":"10.1145/3585499","DOIUrl":"https://doi.org/10.1145/3585499","url":null,"abstract":"Neural Radiance Fields (NeRFs) have revolutionized novel view synthesis for captured scenes, with recent methods allowing interactive free-viewpoint navigation and fast training for scene reconstruction. However, the implicit representations used by these methods—often including neural networks and complex encodings— make them difficult to edit. Some initial methods have been proposed, but they suffer from limited editing capabilities and/or from a lack of interactivity, and are thus unsuitable for interactive editing of captured scenes. We tackle both limitations and introduce NeRFshop, a novel end-to-end method that allows users to interactively select and deform objects through cage-based transformations. NeRFshop provides fine scribble-based user control for the selection of regions or objects to edit, semi-automatic cage creation, and interactive volumetric manipulation of scene content thanks to our GPU-friendly two-level interpolation scheme. Further, we introduce a preliminary approach that reduces potential resulting artifacts of these transformations with a volumetric membrane interpolation technique inspired by Poisson image editing and provide a process that “distills” the edits into a standalone NeRF representation.","PeriodicalId":74536,"journal":{"name":"Proceedings of the ACM on computer graphics and interactive techniques","volume":"6 1","pages":"1:1-1:21"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64067887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}