P. Samokhin, Georgina L. Gardner, Christopher Moffatt, J. Stuart
{"title":"An Inexpensive Incubator for Mammalian Cell Culture Capable of Regulating O2, CO2, and Temperature","authors":"P. Samokhin, Georgina L. Gardner, Christopher Moffatt, J. Stuart","doi":"10.3390/oxygen2010003","DOIUrl":"https://doi.org/10.3390/oxygen2010003","url":null,"abstract":"Mammalian cell culture is widely used for discovery and development. Recently, increasing attention has been paid to the importance of maintaining physiologically-relevant conditions in cell culture. Although oxygen level is a particularly important consideration, it is rarely regulated by experimentalists. The atmospheric O2 levels commonly used in cell culture are significantly higher than those experienced by most mammalian cells in vivo, leaving cells susceptible to oxidative damage, senescence, transformation, and otherwise aberrant physiology. A barrier to incorporating O2 regulation into most cell culture workflows has been the expense of investing in new equipment, as the vast majority of laboratory CO2 incubators do not regulate O2. Here, we describe an inexpensive (<CAD 1000), portable and user-friendly O2/CO2 incubator that can establish and maintain physiological O2, CO2, and temperature values within their physiological ranges. We used an Arduino-based approach to add O2 and CO2 control to a temperature-regulating egg incubator. Our incubator was tested against a commercial laboratory O2/CO2 incubator. Using Presens OxoDish technology, we demonstrate that at a setpoint value of 5% gas-phase incubator O2, media O2 averaged 5.03 (SD = 0.03) with a range of 4.98–5.09%. MCF7, LNCaP and C2C12 cell lines cultured in the incubator displayed normal morphology, proliferation, and viability. Culture for up to one week produced no contamination. Thus, our incubator provides an inexpensive means of maintaining physioxia in routine mammalian cell culture.","PeriodicalId":74387,"journal":{"name":"Oxygen (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49415257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mathilde Pélissié, A. Charles, F. Goupilleau, I. Georg, A. Bryand, B. Gény, O. Garbin
{"title":"Prolonged Cold Ischemia Did Not Impair Mitochondrial Oxygen Consumption or Reactive Oxygen Species Production in Human Uterine Fundus and Horn Myometrium","authors":"Mathilde Pélissié, A. Charles, F. Goupilleau, I. Georg, A. Bryand, B. Gény, O. Garbin","doi":"10.3390/oxygen2010002","DOIUrl":"https://doi.org/10.3390/oxygen2010002","url":null,"abstract":"Uterine transplantation may be a solution for infertility of uterine origin. Nevertheless, only three pregnancies with a live birth have so far been possible involving a uterine transplant from a brain-dead donor. Particularly, the impact of ischemia needs a better understanding. Analysis of mitochondrial respiration and production of reactive oxygen species (ROS) in muscle are of interest since they are pertinent markers of the harmful effects of ischemia. We therefore studied both uterine fundus and horn muscle mitochondrial use of oxygen and ROS production in eight women needing hysterectomy. High resolution respirometry and electron paramagnetic resonance allowed the determination of, respectively, myometrium oxidative capacity, hydrogen peroxide, mitochondrial free radical leak and superoxide anion production early (2 and 7 h) and late (24 h) following surgery. Mitochondrial oxygen consumption of the uterine fundus and horn tended to decrease with time but this was not statistically significant. Concerning ROS production, globally, we observed no significant change for H2O2, superoxide anion and free radical leak. In conclusion, a long period of cold ischemia did not impair myometrium mitochondrial respiration, only generating a transient H2O2 increase in uterine fundus. These data support that cold ischemia, even when prolonged, does not significantly alter uterine muscle oxidative capacity.","PeriodicalId":74387,"journal":{"name":"Oxygen (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45889518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Cilio, Monica Rienzo, Gianluca Villano, Benito Fabio Mirto, Gaetano Giampaglia, Federico Capone, Gianpiero Ferretti, E. di Zazzo, F. Crocetto
{"title":"Beneficial Effects of Antioxidants in Male Infertility Management: A Narrative Review","authors":"S. Cilio, Monica Rienzo, Gianluca Villano, Benito Fabio Mirto, Gaetano Giampaglia, Federico Capone, Gianpiero Ferretti, E. di Zazzo, F. Crocetto","doi":"10.3390/oxygen2010001","DOIUrl":"https://doi.org/10.3390/oxygen2010001","url":null,"abstract":"Background: Infertility, defined as the failure to conceive after one year of regular, unprotected intercourse, affects 50–80 million people worldwide. A male factor is involved in approximately 20–30% of cases. In the etiology of male infertility, the association between poor semen quality and oxidative stress (OS) is well known. High levels of reactive oxygen species (ROS) allow the oxidation of DNA, proteins, and lipids of sperm cells, modifying their vitality, motility, and morphology. Methods: To evaluate the effects of antioxidants on sperm in infertile men, we queried the MEDLINE database (via the PubMed interface) for published studies in the last 10 years (2011–2021). The following keywords were used: “infertility” and -“inositol”, -“alpha-lipoic acid”, -“zinc”, -“folate”, -“coenzyme Q10”, -“selenium”, and -“vitamin”. Results: Inositol regulates OS levels in sperm cells thanks to its role in mitochondrial reactions and is involved in several processes favoring sperm–oocyte interactions. Alpha-lipoic acid (ALA) reduces ROS damage and improves semen parameters in terms of spermatozoa’s motility, morphology, and count. Poor zinc nutrition may be related to low quality of sperm. Supplementation of folate plus zinc has a positive effect on the sperm concentration and morphology. Supplementation with CoQ10 increases sperm concentration, total and progressive motility. Selenium (Se) supplementation improves the overall semen quality and is related to a higher ejaculated volume. Among vitamins, only vitamin B12 shows a positive effect on semen quality; it increases sperm count and motility and reduces sperm DNA damage. Conclusions: In men showing low-quality semen, diet supplementation with antioxidants may improve the sperm quality by alleviating OS-induced sperm damage and enhancing hormone synthesis and spermatozoa concentration, motility, and morphology. Future clinical trials should be focused on the possible association of several antioxidants to take advantage of combined mechanisms of action.","PeriodicalId":74387,"journal":{"name":"Oxygen (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42470968","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Role of Oxygen Radicals in Alzheimer’s Disease: Focus on Tau Protein","authors":"A. Atlante, D. Valenti, V. Latina, G. Amadoro","doi":"10.3390/oxygen1020010","DOIUrl":"https://doi.org/10.3390/oxygen1020010","url":null,"abstract":"Oxygen free radical burst is a prominent early event in the pathogenesis of Alzheimer’s disease (AD). Posttranslational modifications of Tau protein, primarily hyper-phosphorylation and truncation, are indicated as critical mediators of AD pathology. This finding is confirmed by the high levels of oxidative stress markers and by the increased susceptibility to oxygen radicals found in cultured neurons and in brains from transgenic animal models expressing toxic Tau forms, in concomitance with a dramatic reduction in their viability/survival. Here, we collect the latest progress in research focused on the reciprocal and dynamic interplay between oxygen radicals and pathological Tau, discussing how these harmful species cooperate and/or synergize in the progression of AD. In this context, a better understanding of the role of oxidative stress in determining Tau pathology, and vice versa, primarily could be able to define novel biomarkers of early stages of human tauopathies, including AD, and then to develop therapeutic strategies aimed at attenuating, halting, or reversing disease progression.","PeriodicalId":74387,"journal":{"name":"Oxygen (Basel, Switzerland)","volume":"16 35","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41260565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The Reactive Oxygen Species Singlet Oxygen, Hydroxy Radicals, and the Superoxide Radical Anion—Examples of Their Roles in Biology and Medicine","authors":"R. Edge, T. Truscott","doi":"10.3390/oxygen1020009","DOIUrl":"https://doi.org/10.3390/oxygen1020009","url":null,"abstract":"Reactive oxygen species comprise oxygen-based free radicals and non-radical species such as peroxynitrite and electronically excited (singlet) oxygen. These reactive species often have short lifetimes, and much of our understanding of their formation and reactivity in biological and especially medical environments has come from complimentary fast reaction methods involving pulsed lasers and high-energy radiation techniques. These and related methods, such as EPR, are discussed with particular reference to singlet oxygen, hydroxy radicals, the superoxide radical anion, and their roles in medical aspects, such as cancer, vision and skin disorders, and especially pro- and anti-oxidative processes.","PeriodicalId":74387,"journal":{"name":"Oxygen (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48644696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
H. Rinderknecht, S. Ehnert, Bianca Braun, Tina Histing, A. Nussler, C. Linnemann
{"title":"The Art of Inducing Hypoxia","authors":"H. Rinderknecht, S. Ehnert, Bianca Braun, Tina Histing, A. Nussler, C. Linnemann","doi":"10.3390/oxygen1010006","DOIUrl":"https://doi.org/10.3390/oxygen1010006","url":null,"abstract":"Many cells in the human body strongly react on decreased oxygen concentrations, generally defined as hypoxia. Therefore, inducing hypoxia in vitro is essential for research. Classically, hypoxia is induced using a hypoxia chamber, but alternative methods exist that do not require special equipment. Here, we compared three different methods to induce hypoxia without a hypoxia chamber: the chemical stabilization of HIF-1α by CoCl2, the decrease in pericellular oxygen concentrations by increased media height, and the consumption of oxygen by an enzymatic system. Hypoxia induction was further analyzed within three different cell culture systems: 2D (adherent) osteoprogenitor cells, monocytic (suspension) cells, and in a 3D in vitro fracture hematoma model. The different methods were analyzed within the scope of fracture healing regarding inflammation and differentiation. We could show that all three induction methods were feasible for hypoxia induction within adherent cells. Increased media heights did not stimulate a hypoxic response within suspension cells and in the 3D system. Chemical stabilization of HIF-1α showed limitations when looking at the expression of cytokines in osteoprogenitors and monocytes. Enzymatic reduction of oxygen proofed to be most effective within all three systems inducing inflammation and differentiation.","PeriodicalId":74387,"journal":{"name":"Oxygen (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48315134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sixteen Years of Measurements of Ozone over Athens, Greece with a Brewer Spectrophotometer","authors":"K. Eleftheratos, Dimitra Kouklaki, C. Zerefos","doi":"10.3390/oxygen1010005","DOIUrl":"https://doi.org/10.3390/oxygen1010005","url":null,"abstract":"Sixteen years (July 2003–July 2019) of ground-based measurements of total ozone in the urban environment of Athens, Greece, are analyzed in this work. Measurements were acquired with a single Brewer monochromator operating on the roof of the Biomedical Research Foundation of the Academy of Athens since July 2003. We estimate a 16-year climatological mean of total ozone in Athens of about 322 DU, with no significant change since 2003. Ozone data from the Brewer spectrophotometer were compared with TOMS, OMI, and GOME-2A satellite retrievals. The results reveal excellent correlations between the ground-based and satellite ozone measurements greater than 0.9. The variability of total ozone over Athens related to the seasonal cycle, the quasi biennial oscillation (QBO), the El Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), the 11-year solar cycle, and tropopause pressure variability is presented.","PeriodicalId":74387,"journal":{"name":"Oxygen (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/oxygen1010005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46838260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yuka Ikeda, Nozomi Nagase, Ai Tsuji, Kurumi Taniguchi, Y. Kitagishi, Satoru Matsuda
{"title":"Comprehension of the Relationship between Autophagy and Reactive Oxygen Species for Superior Cancer Therapy with Histone Deacetylase Inhibitors","authors":"Yuka Ikeda, Nozomi Nagase, Ai Tsuji, Kurumi Taniguchi, Y. Kitagishi, Satoru Matsuda","doi":"10.3390/OXYGEN1010004","DOIUrl":"https://doi.org/10.3390/OXYGEN1010004","url":null,"abstract":"Epigenetics contains various mechanisms by which cells employ to regulate the transcription of many DNAs. Histone acetylation is an obvious example of the epigenetic mechanism regulating the expression of several genes by changing chromatin accessibility. Histone deacetylases (HDACs) are a class of enzymes that play a critical role in the epigenetic regulation by deacetylation of histone proteins. Inhibitors of the histone deacetylase could result in hyperacetylation of histones, which eventually induce various cellular consequences such as generation of reactive oxygen species (ROS), activation of apoptotic pathways, and initiating autophagy. In particular, excessive levels of ROS have been proposed to contribute to the pathophysiology of various diseases including cancer. Cancers are, as it were, a class of redox diseases. Low levels of ROS are beneficial for cells, however, cancer cells generally have high levels of ROS, which makes them more susceptible than normal cells to the further increases of ROS levels. Cancer cells exhibit metabolic alterations for managing to sustain these oxidative stresses. There is a growing interest in the use of HDAC inhibitors as promising cancer therapeutics with potentiating the activity of established therapeutic applications. Therefore, it should be important to understand the underlying relationship between the regulation of HDACs, ROS production, and cancer cell biology.","PeriodicalId":74387,"journal":{"name":"Oxygen (Basel, Switzerland)","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2021-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/OXYGEN1010004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46730626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}