Molecular biology international最新文献

筛选
英文 中文
5'CAG and 5'CTG Repeats Create Differential Impediment to the Progression of a Minimal Reconstituted T4 Replisome Depending on the Concentration of dNTPs. 5'CAG和5'CTG重复对最小重构T4复制体的进展产生差异障碍,这取决于dNTPs的浓度。
Molecular biology international Pub Date : 2011-01-01 Epub Date: 2011-08-10 DOI: 10.4061/2011/213824
Emmanuelle Delagoutte, Giuseppe Baldacci
{"title":"5'CAG and 5'CTG Repeats Create Differential Impediment to the Progression of a Minimal Reconstituted T4 Replisome Depending on the Concentration of dNTPs.","authors":"Emmanuelle Delagoutte,&nbsp;Giuseppe Baldacci","doi":"10.4061/2011/213824","DOIUrl":"https://doi.org/10.4061/2011/213824","url":null,"abstract":"<p><p>Instability of repetitive sequences originates from strand misalignment during repair or replicative DNA synthesis. To investigate the activity of reconstituted T4 replisomes across trinucleotide repeats (TNRs) during leading strand DNA synthesis, we developed a method to build replication miniforks containing a TNR unit of defined sequence and length. Each minifork consists of three strands, primer, leading strand template, and lagging strand template with a 5' single-stranded (ss) tail. Each strand is prepared independently, and the minifork is assembled by hybridization of the three strands. Using these miniforks and a minimal reconstituted T4 replisome, we show that during leading strand DNA synthesis, the dNTP concentration dictates which strand of the structure-forming 5'CAG/5'CTG repeat creates the strongest impediment to the minimal replication complex. We discuss this result in the light of the known fluctuation of dNTP concentration during the cell cycle and cell growth and the known concentration balance among individual dNTPs.</p>","PeriodicalId":74217,"journal":{"name":"Molecular biology international","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3214698/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30264193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental Chemotherapy for Chagas Disease: A Morphological, Biochemical, and Proteomic Overview of Potential Trypanosoma cruzi Targets of Amidines Derivatives and Naphthoquinones. 南美锥虫病的实验化疗:脒衍生物和萘醌类药物的潜在克氏锥虫靶标的形态学、生物化学和蛋白质组学概述
Molecular biology international Pub Date : 2011-01-01 Epub Date: 2011-06-30 DOI: 10.4061/2011/306928
Solange L de Castro, Denise G J Batista, Marcos M Batista, Wanderson Batista, Anissa Daliry, Elen M de Souza, Rubem F S Menna-Barreto, Gabriel M Oliveira, Kelly Salomão, Cristiane F Silva, Patricia B Silva, Maria de Nazaré C Soeiro
{"title":"Experimental Chemotherapy for Chagas Disease: A Morphological, Biochemical, and Proteomic Overview of Potential Trypanosoma cruzi Targets of Amidines Derivatives and Naphthoquinones.","authors":"Solange L de Castro, Denise G J Batista, Marcos M Batista, Wanderson Batista, Anissa Daliry, Elen M de Souza, Rubem F S Menna-Barreto, Gabriel M Oliveira, Kelly Salomão, Cristiane F Silva, Patricia B Silva, Maria de Nazaré C Soeiro","doi":"10.4061/2011/306928","DOIUrl":"10.4061/2011/306928","url":null,"abstract":"<p><p>Chagas disease (CD), caused by Trypanosoma cruzi, affects approximately eight million individuals in Latin America and is emerging in nonendemic areas due to the globalisation of immigration and nonvectorial transmission routes. Although CD represents an important public health problem, resulting in high morbidity and considerable mortality rates, few investments have been allocated towards developing novel anti-T. cruzi agents. The available therapy for CD is based on two nitro derivatives (benznidazole (Bz) and nifurtimox (Nf)) developed more than four decades ago. Both are far from ideal due to substantial secondary side effects, limited efficacy against different parasite isolates, long-term therapy, and their well-known poor activity in the late chronic phase. These drawbacks justify the urgent need to identify better drugs to treat chagasic patients. Although several classes of natural and synthetic compounds have been reported to act in vitro and in vivo on T. cruzi, since the introduction of Bz and Nf, only a few drugs, such as allopurinol and a few sterol inhibitors, have moved to clinical trials. This reflects, at least in part, the absence of well-established universal protocols to screen and compare drug activity. In addition, a large number of in vitro studies have been conducted using only epimastigotes and trypomastigotes instead of evaluating compounds' activities against intracellular amastigotes, which are the reproductive forms in the vertebrate host and are thus an important determinant in the selection and identification of effective compounds for further in vivo analysis. In addition, due to pharmacokinetics and absorption, distribution, metabolism, and excretion characteristics, several compounds that were promising in vitro have not been as effective as Nf or Bz in animal models of T. cruzi infection. In the last two decades, our team has collaborated with different medicinal chemistry groups to develop preclinical studies for CD and investigate the in vitro and in vivo efficacy, toxicity, selectivity, and parasite targets of different classes of natural and synthetic compounds. Some of these results will be briefly presented, focusing primarily on diamidines and related compounds and naphthoquinone derivatives that showed the most promising efficacy against T. cruzi.</p>","PeriodicalId":74217,"journal":{"name":"Molecular biology international","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195292/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30259755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification and characterization of genes involved in leishmania pathogenesis: the potential for drug target selection. 利什曼原虫发病机制相关基因的鉴定和表征:潜在的药物靶标选择。
Molecular biology international Pub Date : 2011-01-01 Epub Date: 2011-06-26 DOI: 10.4061/2011/428486
Robert Duncan, Sreenivas Gannavaram, Ranadhir Dey, Alain Debrabant, Ines Lakhal-Naouar, Hira L Nakhasi
{"title":"Identification and characterization of genes involved in leishmania pathogenesis: the potential for drug target selection.","authors":"Robert Duncan,&nbsp;Sreenivas Gannavaram,&nbsp;Ranadhir Dey,&nbsp;Alain Debrabant,&nbsp;Ines Lakhal-Naouar,&nbsp;Hira L Nakhasi","doi":"10.4061/2011/428486","DOIUrl":"https://doi.org/10.4061/2011/428486","url":null,"abstract":"<p><p>Identifying and characterizing Leishmania donovani genes and the proteins they encode for their role in pathogenesis can reveal the value of this approach for finding new drug targets. Effective drug targets are likely to be proteins differentially expressed or required in the amastigote life cycle stage found in the patient. Several examples and their potential for chemotherapeutic disruption are presented. A pathway nearly ubiquitous in living cells targeted by anticancer drugs, the ubiquitin system, is examined. New findings in ubiquitin and ubiquitin-like modifiers in Leishmania show how disruption of those pathways could point to additional drug targets. The programmed cell death pathway, now recognized among protozoan parasites, is reviewed for some of its components and evidence that suggests they could be targeted for antiparasitic drug therapy. Finally, the endoplasmic reticulum quality control system is involved in secretion of many virulence factors. How disruptions in this pathway reduce virulence as evidence for potential drug targets is presented.</p>","PeriodicalId":74217,"journal":{"name":"Molecular biology international","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4061/2011/428486","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30259759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
Allelic Diversity of Major Histocompatibility Complex Class II DRB Gene in Indian Cattle and Buffalo. 印度牛和水牛主要组织相容性复合体ⅱ类DRB基因的等位基因多样性。
Molecular biology international Pub Date : 2011-01-01 Epub Date: 2011-01-27 DOI: 10.4061/2011/120176
Sachinandan De, Raj Kumar Singh, Biswajit Brahma
{"title":"Allelic Diversity of Major Histocompatibility Complex Class II DRB Gene in Indian Cattle and Buffalo.","authors":"Sachinandan De,&nbsp;Raj Kumar Singh,&nbsp;Biswajit Brahma","doi":"10.4061/2011/120176","DOIUrl":"https://doi.org/10.4061/2011/120176","url":null,"abstract":"<p><p>The present study was conducted to study the diversity of MHC-DRB3 alleles in Indian cattle and buffalo breeds. Previously reported BoLA-DRB exon 2 alleles of Indian Zebu cattle, Bos taurus cattle, buffalo, sheep, and goats were analyzed for the identities and divergence among various allele sequences. Comparison of predicted amino acid residues of DRB3 exon 2 alleles with similar alleles from other ruminants revealed considerable congruence in amino acid substitution pattern. These alleles showed a high degree of nucleotide and amino acid polymorphism at positions forming peptide-binding regions. A higher rate of nonsynonymous substitution was detected at the peptide-binding regions, indicating that BoLA-DRB3 allelic sequence evolution was driven by positive selection.</p>","PeriodicalId":74217,"journal":{"name":"Molecular biology international","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195384/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30260427","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Glycolysis in the african trypanosome: targeting enzymes and their subcellular compartments for therapeutic development. 非洲锥虫的糖酵解:靶向酶及其亚细胞区室用于治疗发展。
Molecular biology international Pub Date : 2011-01-01 Epub Date: 2011-04-11 DOI: 10.4061/2011/123702
April F Coley, Heidi C Dodson, Meredith T Morris, James C Morris
{"title":"Glycolysis in the african trypanosome: targeting enzymes and their subcellular compartments for therapeutic development.","authors":"April F Coley,&nbsp;Heidi C Dodson,&nbsp;Meredith T Morris,&nbsp;James C Morris","doi":"10.4061/2011/123702","DOIUrl":"https://doi.org/10.4061/2011/123702","url":null,"abstract":"<p><p>Subspecies of the African trypanosome, Trypanosoma brucei, which cause human African trypanosomiasis, are transmitted by the tsetse fly, with transmission-essential lifecycle stages occurring in both the insect vector and human host. During infection of the human host, the parasite is limited to using glycolysis of host sugar for ATP production. This dependence on glucose breakdown presents a series of targets for potential therapeutic development, many of which have been explored and validated as therapeutic targets experimentally. These include enzymes directly involved in glucose metabolism (e.g., the trypanosome hexokinases), as well as cellular components required for development and maintenance of the essential subcellular compartments that house the major part of the pathway, the glycosomes.</p>","PeriodicalId":74217,"journal":{"name":"Molecular biology international","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3195984/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30260428","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 33
Glucose-6-phosphate dehydrogenase of trypanosomatids: characterization, target validation, and drug discovery. 锥虫的葡萄糖-6-磷酸脱氢酶:表征,靶标验证和药物发现。
Molecular biology international Pub Date : 2011-01-01 Epub Date: 2011-04-04 DOI: 10.4061/2011/135701
Shreedhara Gupta, Mariana Igoillo-Esteve, Paul A M Michels, Artur T Cordeiro
{"title":"Glucose-6-phosphate dehydrogenase of trypanosomatids: characterization, target validation, and drug discovery.","authors":"Shreedhara Gupta,&nbsp;Mariana Igoillo-Esteve,&nbsp;Paul A M Michels,&nbsp;Artur T Cordeiro","doi":"10.4061/2011/135701","DOIUrl":"https://doi.org/10.4061/2011/135701","url":null,"abstract":"<p><p>In trypanosomatids, glucose-6-phosphate dehydrogenase (G6PDH), the first enzyme of the pentosephosphate pathway, is essential for the defense of the parasite against oxidative stress. Trypanosoma brucei, Trypanosoma cruzi, and Leishmania mexicana G6PDHs have been characterized. The parasites' G6PDHs contain a unique 37 amino acid long N-terminal extension that in T. cruzi seems to regulate the enzyme activity in a redox-state-dependent manner. T. brucei and T. cruzi G6PDHs, but not their Leishmania spp. counterpart, are inhibited, in an uncompetitive way, by steroids such as dehydroepiandrosterone and derivatives. The Trypanosoma enzymes are more susceptible to inhibition by these compounds than the human G6PDH. The steroids also effectively kill cultured trypanosomes but not Leishmania and are presently considered as promising leads for the development of new parasite-selective chemotherapeutic agents.</p>","PeriodicalId":74217,"journal":{"name":"Molecular biology international","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.4061/2011/135701","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30260429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 20
Peptide Inhibition of Topoisomerase IB from Plasmodium falciparum. 恶性疟原虫拓扑异构酶IB的肽抑制作用。
Molecular biology international Pub Date : 2011-01-01 Epub Date: 2011-05-04 DOI: 10.4061/2011/854626
Amit Roy, Ilda D'Annessa, Christine J F Nielsen, David Tordrup, Rune R Laursen, Birgitta Ruth Knudsen, Alessandro Desideri, Felicie Faucon Andersen
{"title":"Peptide Inhibition of Topoisomerase IB from Plasmodium falciparum.","authors":"Amit Roy,&nbsp;Ilda D'Annessa,&nbsp;Christine J F Nielsen,&nbsp;David Tordrup,&nbsp;Rune R Laursen,&nbsp;Birgitta Ruth Knudsen,&nbsp;Alessandro Desideri,&nbsp;Felicie Faucon Andersen","doi":"10.4061/2011/854626","DOIUrl":"https://doi.org/10.4061/2011/854626","url":null,"abstract":"<p><p>Control of diseases inflicted by protozoan parasites such as Leishmania, Trypanosoma, and Plasmodium, which pose a serious threat to human health worldwide, depends on a rather small number of antiparasite drugs, of which many are toxic and/or inefficient. Moreover, the increasing occurrence of drug-resistant parasites emphasizes the need for new and effective antiprotozoan drugs. In the current study, we describe a synthetic peptide, WRWYCRCK, with inhibitory effect on the essential enzyme topoisomerase I from the malaria-causing parasite Plasmodium falciparum. The peptide inhibits specifically the transition from noncovalent to covalent DNA binding of P. falciparum topoisomerase I, while it does not affect the ligation step of catalysis. A mechanistic explanation for this inhibition is provided by molecular docking analyses. Taken together the presented results suggest that synthetic peptides may represent a new class of potential antiprotozoan drugs.</p>","PeriodicalId":74217,"journal":{"name":"Molecular biology international","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3200115/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30260843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 11
Evasion of Host Defence by Leishmania donovani: Subversion of Signaling Pathways. 多诺瓦利什曼原虫逃避宿主防御:信号通路的颠覆。
Molecular biology international Pub Date : 2011-01-01 Epub Date: 2011-04-27 DOI: 10.4061/2011/343961
Md Shadab, Nahid Ali
{"title":"Evasion of Host Defence by Leishmania donovani: Subversion of Signaling Pathways.","authors":"Md Shadab,&nbsp;Nahid Ali","doi":"10.4061/2011/343961","DOIUrl":"https://doi.org/10.4061/2011/343961","url":null,"abstract":"<p><p>Protozoan parasites of the genus Leishmania are responsible for causing a variety of human diseases known as leishmaniasis, which range from self-healing skin lesions to severe infection of visceral organs that are often fatal if left untreated. Leishmania donovani (L. donovani), the causative agent of visceral leishmaniasis, exemplifys a devious organism that has developed the ability to invade and replicate within host macrophage. In fact, the parasite has evolved strategies to interfere with a broad range of signaling processes in macrophage that includes Protein Kinase C, the JAK2/STAT1 cascade, and the MAP Kinase pathway. This paper focuses on how L. donovani modulates these signaling pathways that favour its survival and persistence in host cells.</p>","PeriodicalId":74217,"journal":{"name":"Molecular biology international","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3199940/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30259756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 40
A perspective on the emergence of sialic acids as potent determinants affecting leishmania biology. 唾液酸作为影响利什曼原虫生物学的有力决定因素的出现的观点。
Molecular biology international Pub Date : 2011-01-01 Epub Date: 2011-07-25 DOI: 10.4061/2011/532106
Angana Ghoshal, Chitra Mandal
{"title":"A perspective on the emergence of sialic acids as potent determinants affecting leishmania biology.","authors":"Angana Ghoshal,&nbsp;Chitra Mandal","doi":"10.4061/2011/532106","DOIUrl":"https://doi.org/10.4061/2011/532106","url":null,"abstract":"<p><p>Leishmaniasis caused by Leishmania sp. has a wide range of manifestations from cutaneous to the deadly visceral form. They shuttle between the invertebrate and vertebrate hosts as promastigotes and amastigotes having adaptations for subverting host immune responses. Parasite-specific glycoconjugates have served as important determinants influencing parasite recognition, internalization, differentiation, multiplication, and virulence. Despite the steady progress in the field of parasite glycobiology, sialobiology has been a less traversed domain of research in leishmaniasis. The present paper focuses on identification, characterization, and differential distribution of sialoglycotope having the linkage-specific 9-O-acetylated sialic acid in promastigotes of different Leishmania sp. causing different clinical ramifications emphasizing possible role of these sialoglycotopes in infectivity, virulence, nitric oxide resistance, and host modulation in Leishmania spp. asserting them to be important molecules influencing parasite biology.</p>","PeriodicalId":74217,"journal":{"name":"Molecular biology international","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3200265/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30259761","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 12
Priming DNA replication from triple helix oligonucleotides: possible threestranded DNA in DNA polymerases. 从三螺旋寡核苷酸引发DNA复制:DNA聚合酶中可能的三链DNA。
Molecular biology international Pub Date : 2011-01-01 Epub Date: 2011-09-14 DOI: 10.4061/2011/562849
Patrick P Lestienne
{"title":"Priming DNA replication from triple helix oligonucleotides: possible threestranded DNA in DNA polymerases.","authors":"Patrick P Lestienne","doi":"10.4061/2011/562849","DOIUrl":"https://doi.org/10.4061/2011/562849","url":null,"abstract":"<p><p>Triplex associate with a duplex DNA presenting the same polypurine or polypyrimidine-rich sequence in an antiparallel orientation. So far, triplex forming oligonucleotides (TFOs) are known to inhibit transcription, replication, and to induce mutations. A new property of TFO is reviewed here upon analysis of DNA breakpoint yielding DNA rearrangements; the synthesized sequence of the first direct repeat displays a skewed polypurine- rich sequence. This synthesized sequence can bind the second homologous duplex sequence through the formation of a triple helix, which is able to prime further DNA replication. In these case, the d(G)-rich Triple Helix Primers (THP) bind the homologous strand in a parallel manner, possibly via a RecA-like mechanism. This novel property is shared by all tested DNA polymerases: phage, retrovirus, bacteria, and human. These features may account for illegitimate initiation of replication upon single-strand breakage and annealing to a homologous sequence where priming may occur. Our experiments suggest that DNA polymerases can bind three instead of two polynucleotide strands in their catalytic centre.</p>","PeriodicalId":74217,"journal":{"name":"Molecular biology international","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3200174/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"30373670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信