Advances in protein chemistry and structural biology最新文献

筛选
英文 中文
In silico network pharmacology analysis and molecular docking validation of Swasa Kudori tablet for screening druggable phytoconstituents of asthma. 对 Swasa Kudori 片剂进行硅网络药理学分析和分子对接验证,以筛选可用于治疗哮喘的植物成分。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2023-08-10 DOI: 10.1016/bs.apcsb.2023.07.001
Karthik Sekaran, Rinku Polachirakkal Varghese, Ashwini Karthik, K Sasikumar, M S Shree Devi, P Sathiyarajeswaran, C George Priya Doss
{"title":"In silico network pharmacology analysis and molecular docking validation of Swasa Kudori tablet for screening druggable phytoconstituents of asthma.","authors":"Karthik Sekaran, Rinku Polachirakkal Varghese, Ashwini Karthik, K Sasikumar, M S Shree Devi, P Sathiyarajeswaran, C George Priya Doss","doi":"10.1016/bs.apcsb.2023.07.001","DOIUrl":"10.1016/bs.apcsb.2023.07.001","url":null,"abstract":"<p><p>Traditional medicines are impactful in treating a cluster of respiratory-related illnesses. This paper demonstrates screening active, druggable phytoconstituents from a classical Siddha-based poly-herbal formulation called Swasa Kudori Tablet to treat asthma. The phytoconstituents of Swasa Kudori are identified as Calotropis gigantea, Piper nigrum, and (Co-drug) Abies webbiana. Active chemical compounds are extracted with the Chemical Entities of Biological Interest (ChEBI) database. The gene targets of each compound are identified based on the pharmacological activity using the DIGEP-Pred database. Thirty-two genes showing P<sub>a</sub>> 0.7 is screened, and the target markers are selected after performing gene overlap evaluation with the asthma genes reported in GeneCards and DisGeNET database. Ten markers are identified, such as ADIPOQ, CASP8, CAT, CCL2, CD86, FKBP5, HMOX1, NFE2L2, TIMP1, VDR, in common, listed as molecular targets. Pharmacokinetic assessment (ADME) revealed five natural drug compounds 2-5-7-trihydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-4H-chromen-4-one, (+)-catechin-3'-methyl ether, futoenone, 5-hydroxy-4',7-dimethoxyflavanone, and pinocembrin showing better druggability. Further screening delineates the target (HMOX1) and drug (pinocembrin) for molecular docking evaluation. When docked with HO-1, Pinocembrin showed a binding affinity of -8.0 kcal/mol. MD simulation studies substantiate the docking studies as HO-1 in complex with pinocembrin remains stable in the simulated trajectory. The current findings exhibit the significance of traditional medicines as potential drug candidates against asthma.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"138 ","pages":"257-274"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139465962","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Computational approaches for identifying disease-causing mutations in proteins. 识别蛋白质致病突变的计算方法。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2023-12-20 DOI: 10.1016/bs.apcsb.2023.11.007
Medha Pandey, Suraj Kumar Shah, M Michael Gromiha
{"title":"Computational approaches for identifying disease-causing mutations in proteins.","authors":"Medha Pandey, Suraj Kumar Shah, M Michael Gromiha","doi":"10.1016/bs.apcsb.2023.11.007","DOIUrl":"10.1016/bs.apcsb.2023.11.007","url":null,"abstract":"<p><p>Advancements in genome sequencing have expanded the scope of investigating mutations in proteins across different diseases. Amino acid mutations in a protein alter its structure, stability and function and some of them lead to diseases. Identification of disease-causing mutations is a challenging task and it will be helpful for designing therapeutic strategies. Hence, mutation data available in the literature have been curated and stored in several databases, which have been effectively utilized for developing computational methods to identify deleterious mutations (drivers), using sequence and structure-based properties of proteins. In this chapter, we describe the contents of specific databases that have information on disease-causing and neutral mutations followed by sequence and structure-based properties. Further, characteristic features of disease-causing mutations will be discussed along with computational methods for identifying cancer hotspot residues and disease-causing mutations in proteins.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"139 ","pages":"141-171"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncovering the secrets of resistance: An introduction to computational methods in infectious disease research. 揭开抗药性的秘密:传染病研究中的计算方法简介。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-02-15 DOI: 10.1016/bs.apcsb.2023.11.004
Aditya K Padhi, Shweata Maurya
{"title":"Uncovering the secrets of resistance: An introduction to computational methods in infectious disease research.","authors":"Aditya K Padhi, Shweata Maurya","doi":"10.1016/bs.apcsb.2023.11.004","DOIUrl":"10.1016/bs.apcsb.2023.11.004","url":null,"abstract":"<p><p>Antimicrobial resistance (AMR) is a growing global concern with significant implications for infectious disease control and therapeutics development. This chapter presents a comprehensive overview of computational methods in the study of AMR. We explore the prevalence and statistics of AMR, underscoring its alarming impact on public health. The role of AMR in infectious disease outbreaks and its impact on therapeutics development are discussed, emphasizing the need for novel strategies. Resistance mutations are pivotal in AMR, enabling pathogens to evade antimicrobial treatments. We delve into their importance and contribution to the spread of AMR. Experimental methods for quantitatively evaluating resistance mutations are described, along with their limitations. To address these challenges, computational methods provide promising solutions. We highlight the advantages of computational approaches, including rapid analysis of large datasets and prediction of resistance profiles. A comprehensive overview of computational methods for studying AMR is presented, encompassing genomics, proteomics, structural bioinformatics, network analysis, and machine learning algorithms. The strengths and limitations of each method are briefly outlined. Additionally, we introduce ResScan-design, our own computational method, which employs a protein (re)design protocol to identify potential resistance mutations and adaptation signatures in pathogens. Case studies are discussed to showcase the application of ResScan in elucidating hotspot residues, understanding underlying mechanisms, and guiding the design of effective therapies. In conclusion, we emphasize the value of computational methods in understanding and combating AMR. Integration of experimental and computational approaches can expedite the discovery of innovative antimicrobial treatments and mitigate the threat posed by AMR.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"139 ","pages":"173-220"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metalloproteins and metalloproteomics in health and disease. 健康和疾病中的金属蛋白和金属蛋白组学。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-02-02 DOI: 10.1016/bs.apcsb.2023.12.013
Iman Hassan Ibrahim
{"title":"Metalloproteins and metalloproteomics in health and disease.","authors":"Iman Hassan Ibrahim","doi":"10.1016/bs.apcsb.2023.12.013","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2023.12.013","url":null,"abstract":"<p><p>Metalloproteins represents more than one third of human proteome, with huge variation in physiological functions and pathological implications, depending on the metal/metals involved and tissue context. Their functions range from catalysis, bioenergetics, redox, to DNA repair, cell proliferation, signaling, transport of vital elements, and immunity. The human metalloproteomic studies revealed that many families of metalloproteins along with individual metalloproteins are dysregulated under several clinical conditions. Also, several sorts of interaction between redox- active or redox- inert metalloproteins are observed in health and disease. Metalloproteins profiling shows distinct alterations in neurodegenerative diseases, cancer, inflammation, infection, diabetes mellitus, among other diseases. This makes metalloproteins -either individually or as families- a promising target for several therapeutic approaches. Inhibitors and activators of metalloenzymes, metal chelators, along with artificial metalloproteins could be versatile in diagnosis and treatment of several diseases, in addition to other biomedical and industrial applications.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"141 ","pages":"123-176"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Viral mimicry and endocrine system: Divulging the importance in host-microbial crosstalk. 病毒模仿和内分泌系统:揭示宿主-微生物串扰的重要性
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-07-04 DOI: 10.1016/bs.apcsb.2024.03.005
Elora Kalita, Mamta Panda, Abhishek Rao, Rajan Kumar Pandey, Vijay Kumar Prajapati
{"title":"Viral mimicry and endocrine system: Divulging the importance in host-microbial crosstalk.","authors":"Elora Kalita, Mamta Panda, Abhishek Rao, Rajan Kumar Pandey, Vijay Kumar Prajapati","doi":"10.1016/bs.apcsb.2024.03.005","DOIUrl":"10.1016/bs.apcsb.2024.03.005","url":null,"abstract":"<p><p>Host-pathogen interactions are complex associations which evolve over long co-evolutionary histories. Pathogens exhibit different mechanisms to gain advantage over their host. Mimicry of host factors is an influential tool in subverting host mechanisms to ensure pathogenesis. This chapter discusses such molecular mimicry exhibited during viral infections. Understanding the evolutionary relationships, shared identity and functional impact of the virus encoded mimics is critical. With a particular emphasis on viral mimics and their association with cancer and autoimmune diseases, this chapter highlights the importance of molecular mimicry in virus biology.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"142 ","pages":"421-436"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term culture of patient-derived mammary organoids in non-biogenic electrospun scaffolds for identifying metalloprotein and motor protein activities in aging and senescence. 在非生物源电纺支架中长期培养源自患者的乳腺器官组织,以确定衰老和衰老过程中金属蛋白和运动蛋白的活性。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-04-14 DOI: 10.1016/bs.apcsb.2024.03.008
Eleonora Piscitelli, Iriczalli Cruz Maya, Cinzia Cocola, Valentina Martino, Edoardo Abeni, Paride Pelucchi, Elena Angeli, Patrizia Guida, Arianna Consiglio, Giorgio Grillo, Theodoros Karnavas, Angelos Gritzapis, Mira Palizban, Ioannis Missitzis, Martin Götte, Sabino Luini, James Kehler, Cristiana Balbino, Vincenzo Guarino, Luciano Milanesi, Ileana Zucchi, Alberto Diaspro, Rolland Reinbold
{"title":"Long-term culture of patient-derived mammary organoids in non-biogenic electrospun scaffolds for identifying metalloprotein and motor protein activities in aging and senescence.","authors":"Eleonora Piscitelli, Iriczalli Cruz Maya, Cinzia Cocola, Valentina Martino, Edoardo Abeni, Paride Pelucchi, Elena Angeli, Patrizia Guida, Arianna Consiglio, Giorgio Grillo, Theodoros Karnavas, Angelos Gritzapis, Mira Palizban, Ioannis Missitzis, Martin Götte, Sabino Luini, James Kehler, Cristiana Balbino, Vincenzo Guarino, Luciano Milanesi, Ileana Zucchi, Alberto Diaspro, Rolland Reinbold","doi":"10.1016/bs.apcsb.2024.03.008","DOIUrl":"https://doi.org/10.1016/bs.apcsb.2024.03.008","url":null,"abstract":"<p><p>We recently identified TMEM230 as a master regulator of the endomembrane system of cells. TMEM230 expression is necessary for promoting motor protein dependent intracellular trafficking of metalloproteins for cellular energy production in mitochondria. TMEM230 is also required for transport and secretion of metalloproteinases for autophagy and phagosome dependent clearance of misfolded proteins, defective RNAs and damaged cells, activities that decline with aging. This suggests that aberrant levels of TMEM230 may contribute to aging and regain of proper levels may have therapeutic applications. The components of the endomembrane system include the Golgi complex, other membrane bound organelles, and secreted vesicles and factors. Secreted cellular components modulate immune response and tissue regeneration in aging. Upregulation of intracellular packaging, trafficking and secretion of endosome components while necessary for tissue homeostasis and normal wound healing, also promote secretion of pro-inflammatory and pro-senescence factors. We recently determined that TMEM230 is co-regulated with trafficked cargo of the endomembrane system, including lysosome factors such as RNASET2. Normal tissue regeneration (in aging), repair (following injury) and aberrant destructive tissue remodeling (in cancer or autoimmunity) likely are regulated by TMEM230 activities of the endomembrane system, mitochondria and autophagosomes. The role of TMEM230 in aging is supported by its ability to regulate the pro-inflammatory secretome and senescence-associated secretory phenotype in tissue cells of patients with advanced age and chronic disease. Identifying secreted factors regulated by TMEM230 in young patients and patients of advanced age will facilitate identification of aging associated targets that aberrantly promote, inhibit or reverse aging. Ex situ culture of patient derived cells for identifying secreted factors in tissue regeneration and aging provides opportunities in developing therapeutic and personalized medicine strategies. Identification and validation of human secreted factors in tissue regeneration requires long-term stabile scaffold culture conditions that are different from those previously reported for cell lines used as cell models for aging. We describe a 3 dimensional (3D) platform utilizing non-biogenic and non-labile poly ε-caprolactone scaffolds that supports maintenance of long-term continuous cultures of human stem cells, in vitro generated 3D organoids and patient derived tissue. Combined with animal component free culture media, non-biogenic scaffolds are suitable for proteomic and glycobiological analyses to identify human factors in aging. Applications of electrospun nanofiber technologies in 3D cell culture allow for ex situ screening and the development of patient personalized therapeutic strategies and predicting their effectiveness in mitigating or promoting aging.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"141 ","pages":"331-360"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141496759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Proteomics and genomics insights on malignant osteosarcoma. 蛋白质组学和基因组学对恶性骨肉瘤的启示。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2023-11-28 DOI: 10.1016/bs.apcsb.2023.06.001
Nachammai Kathiresan, Chandrabose Selvaraj, Sangavi Pandian, Gowtham Kumar Subbaraj, Abdulaziz S Alothaim, Sher Zaman Safi, Langeswaran Kulathaivel
{"title":"Proteomics and genomics insights on malignant osteosarcoma.","authors":"Nachammai Kathiresan, Chandrabose Selvaraj, Sangavi Pandian, Gowtham Kumar Subbaraj, Abdulaziz S Alothaim, Sher Zaman Safi, Langeswaran Kulathaivel","doi":"10.1016/bs.apcsb.2023.06.001","DOIUrl":"10.1016/bs.apcsb.2023.06.001","url":null,"abstract":"<p><p>Osteosarcoma is a malignant osseous neoplasm. Osteosarcoma is a primary bone malignancy capable of producing osteoid tissue or immature bones. A subsequent malignant degeneration of the primary bone pathology occurs less frequently in adults. The over-expression of several proteins, including Heat shock proteins, Cofilin, Annexins, Insulin-like growth factor, transforming growth factor-β, Receptor tyrosine kinase, Ezrin, Runx2, SATB2, ATF4, Annexins, cofilin, EGFR, VEGF, retinoblastoma 1 (Rb1) and secreted protein, has been associated to the development and progression of osteosarcoma. These proteins are involved in cell adhesion, migration, invasion, and the control of cell cycle and apoptosis. In genomic studies, osteosarcoma has been associated with several genetic abnormalities, including chromosomal rearrangements, gene mutations, and gene amplifications. These differentially expressed proteins could be used as early identification biomarkers or treatment targets. Proteomics and genomics play significant parts in enhancing our molecular understanding of osteosarcoma, and their integration provides essential insights into this aggressive bone cancer. This review will discuss the tumour biology that has assisted in helping us better understand the causes of osteosarcoma and how they could potentially be used to find new treatment targets and enhance the survival rate for osteosarcoma patients.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"138 ","pages":"275-300"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139465997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Technological advancements in viral vector designing and optimization for therapeutic applications. 病毒载体设计和优化治疗应用方面的技术进步。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-02-28 DOI: 10.1016/bs.apcsb.2023.11.013
Satyendra Singh, Anurag Kumar Pandey, Takhellambam Malemnganba, Vijay Kumar Prajapati
{"title":"Technological advancements in viral vector designing and optimization for therapeutic applications.","authors":"Satyendra Singh, Anurag Kumar Pandey, Takhellambam Malemnganba, Vijay Kumar Prajapati","doi":"10.1016/bs.apcsb.2023.11.013","DOIUrl":"10.1016/bs.apcsb.2023.11.013","url":null,"abstract":"<p><p>Viral vector engineering is critical to the advancement of several sectors of biotechnology, gene therapy, and vaccine development. These vectors were produced from viruses, were employed to deliver therapeutic genes or to alter biological processes. The potential for viral vectors to improve the precision, safety, and efficiency of therapeutic interventions has boosted their demand. The dynamic interplay between technological advancements and computational tools in establishing the landscape of viral vector engineering and vector optimization for therapeutic reasons is discussed in this chapter. It also emphasizes the importance of in silico techniques in maximizing vector potential for therapeutics and many phases of viral vector engineering, from genomic analysis to computer modelling and advancements to improve precise gene delivery. High-throughput screening propels the expedited process of vector selection, and computational techniques to analyze complex omics data to further enhance vector capabilities have been discussed. As in silico models reveal insights into off-target effects and integration sites, vector safety (biodistribution and toxicity) remains a crucial part and bridges the gap between preclinical and clinical investigations. Despite the limitations, this chapter depicts a future in which technology and computing merge to catapult viral vector therapy into an era of boundless possibilities.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"139 ","pages":"57-87"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140048550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the role of estrogen and progestins in breast cancer: A genomic approach to diagnosis. 探索雌激素和孕激素在乳腺癌中的作用:基因组诊断方法。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2024-06-11 DOI: 10.1016/bs.apcsb.2023.12.023
Prasanna Kumar Selvam, Santhosh Mudipalli Elavarasu, T Dhanushkumar, Karthick Vasudevan, C George Priya Doss
{"title":"Exploring the role of estrogen and progestins in breast cancer: A genomic approach to diagnosis.","authors":"Prasanna Kumar Selvam, Santhosh Mudipalli Elavarasu, T Dhanushkumar, Karthick Vasudevan, C George Priya Doss","doi":"10.1016/bs.apcsb.2023.12.023","DOIUrl":"10.1016/bs.apcsb.2023.12.023","url":null,"abstract":"<p><p>Breast cancer (BC) is the most common cancer among women and a major cause of death from cancer. The role of estrogen and progestins, including synthetic hormones like R5020, in the development of BC has been highlighted in numerous studies. In our study, we employed machine learning and advanced bioinformatics to identify genes that could serve as diagnostic markers for BC. We thoroughly analyzed the transcriptomic data of two BC cell lines, T47D and UDC4, and performed differential gene expression analysis. We also conducted functional enrichment analysis to understand the biological functions influenced by these genes. Our study identified several diagnostic genes strongly associated with BC, including MIR6728, ENO1-IT1, ENO1-AS1, RNU6-304P, HMGN2P17, RP3-477M7.5, RP3-477M7.6, and CA6. The genes MIR6728, ENO1-IT1, ENO1-AS1, and HMGN2P17 are involved in cancer control, glycolysis, and DNA-related processes, while CA6 is associated with apoptosis and cancer development. These genes could potentially serve as predictors for BC, paving the way for more precise diagnostic methods and personalized treatment plans. This research enhances our understanding of BC and offers promising avenues for improving patient care in the future.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"142 ","pages":"25-43"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The biofilm proteome of Staphylococcus aureus and its implications for therapeutic interventions to biofilm-associated infections. 金黄色葡萄球菌的生物膜蛋白质组及其对生物膜相关感染治疗干预的影响。
3区 生物学
Advances in protein chemistry and structural biology Pub Date : 2024-01-01 Epub Date: 2023-09-19 DOI: 10.1016/bs.apcsb.2023.08.002
Dileep Francis, Gopika Veeramanickathadathil Hari, Abhijith Koonthanmala Subash, Anusha Bhairaddy, Atheene Joy
{"title":"The biofilm proteome of Staphylococcus aureus and its implications for therapeutic interventions to biofilm-associated infections.","authors":"Dileep Francis, Gopika Veeramanickathadathil Hari, Abhijith Koonthanmala Subash, Anusha Bhairaddy, Atheene Joy","doi":"10.1016/bs.apcsb.2023.08.002","DOIUrl":"10.1016/bs.apcsb.2023.08.002","url":null,"abstract":"<p><p>Staphylococcus aureus is a major healthcare concern due to its ability to inflict life-threatening infections and evolve antibiotic resistance at an alarming pace. It is frequently associated with hospital-acquired infections, especially device-associated infections. Systemic infections due to S. aureus are difficult to treat and are associated with significant mortality and morbidity. The situation is worsened by the ability of S. aureus to form social associations called biofilms. Biofilms embed a community of cells with the ability to communicate with each other and share resources within a polysaccharide or protein matrix. S. aureus establish biofilms on tissues and conditioned abiotic surfaces. Biofilms are hyper-tolerant to antibiotics and help evade host immune responses. Biofilms exacerbate the severity and recalcitrance of device-associated infections. The development of a biofilm involves various biomolecules, such as polysaccharides, proteins and nucleic acids, contributing to different structural and functional roles. Interconnected signaling pathways and regulatory molecules modulate the expression of these molecules. A comprehensive understanding of the molecular biology of biofilm development would help to devise effective anti-biofilm therapeutics. Although bactericidal agents, antimicrobial peptides, bacteriophages and nano-conjugated anti-biofilm agents have been employed with varying levels of success, there is still a requirement for effective and clinically viable anti-biofilm therapeutics. Proteins that are expressed and utilized during biofilm formation, constituting the biofilm proteome, are a particularly attractive target for anti-biofilm strategies. The proteome can be explored to identify potential anti-biofilm drug targets and utilized for rational drug discovery. With the aim of uncovering the biofilm proteome, this chapter explores the mechanism of biofilm formation and its regulation. Furthermore, it explores the antibiofilm therapeutics targeted against the biofilm proteome.</p>","PeriodicalId":7376,"journal":{"name":"Advances in protein chemistry and structural biology","volume":"138 ","pages":"327-400"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139466021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信