{"title":"Mixed-valence manganites – ten years on","authors":"J. Coey, M. Viret, S. von Molnár","doi":"10.1080/00018730903303370","DOIUrl":"https://doi.org/10.1080/00018730903303370","url":null,"abstract":"","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2009-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018730903303370","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Coherent methods in the X-ray sciences","authors":"K. Nugent","doi":"10.1080/00018730903270926","DOIUrl":"https://doi.org/10.1080/00018730903270926","url":null,"abstract":"X-ray sources are developing rapidly and their coherent output is growing correspondingly. The increased coherent flux from modern X-ray sources is being matched with an associated development in experimental methods. This article reviews the literature describing the ideas that utilize the increased brilliance from modern X-ray sources. It explores how ideas in coherent X-ray science are leading to developments in other areas, and vice versa. The article describes measurements of coherence properties and uses this discussion as a base from which to describe partially coherent diffraction and X-ray phase-contrast imaging, with applications in materials science, engineering and medicine. Coherent diffraction imaging methods are reviewed along with associated experiments in materials science. Proposals for experiments to be performed with the new X-ray free-electron lasers are briefly discussed. The literature on X-ray photon-correlation spectroscopy is described and the features it has in common with other coherent X-ray methods are identified. Many of the ideas used in the coherent X-ray literature have their origins in the optical and electron communities and these connections are explored. A review of the areas in which ideas from coherent X-ray methods are contributing to methods for the neutron, electron and optical communities is presented.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2009-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018730903270926","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiferroicity: the coupling between magnetic and polarization orders","authors":"Kefeng Wang, Jun-Ming Liu, Zhifeng Ren","doi":"10.1080/00018730902920554","DOIUrl":"https://doi.org/10.1080/00018730902920554","url":null,"abstract":"Multiferroics, defined for those multifunctional materials in which two or more kinds of fundamental ferroicities coexist, have become one of the hottest topics of condensed matter physics and materials science in recent years. The coexistence of several order parameters in multiferroics brings out novel physical phenomena and offers possibilities for new device functions. The revival of research activities on multiferroics is evidenced by some novel discoveries and concepts, both experimentally and theoretically. In this review, we outline some of the progressive milestones in this stimulating field, especially for those single-phase multiferroics where magnetism and ferroelectricity coexist. First, we highlight the physical concepts of multiferroicity and the current challenges to integrate the magnetism and ferroelectricity into a single-phase system. Subsequently, we summarize various strategies used to combine the two types of order. Special attention is paid to three novel mechanisms for multiferroicity generation: (1) the ferroelectricity induced by the spin orders such as spiral and E-phase antiferromagnetic spin orders, which break the spatial inversion symmetry; (2) the ferroelectricity originating from the charge-ordered states; and (3) the ferrotoroidic system. Then, we address the elementary excitations such as electromagnons, and the application potentials of multiferroics. Finally, open questions and future research opportunities are proposed.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2009-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018730902920554","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Keldysh technique and non-linear σ-model: basic principles and applications","authors":"A. Kamenev, A. Levchenko","doi":"10.1080/00018730902850504","DOIUrl":"https://doi.org/10.1080/00018730902850504","url":null,"abstract":"The purpose of this review is to provide a comprehensive pedagogical introduction into Keldysh technique for interacting out-of-equilibrium fermionic and bosonic systems. The emphasis is placed on a functional integral representation of the underlying microscopic models. A large part of the review is devoted to derivation and applications of the non-linear σ-model for disordered metals and superconductors. We discuss topics such as transport properties, mesoscopic effects, counting statistics, interaction corrections, kinetic equations, etc. The section devoted to disordered superconductors includes the Usadel equation, fluctuation corrections, time-dependent Ginzburg–Landau theory, proximity and Josephson effects, etc.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018730902850504","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Lattice symmetry breaking in cuprate superconductors: stripes, nematics, and superconductivity","authors":"M. Vojta","doi":"10.1080/00018730903122242","DOIUrl":"https://doi.org/10.1080/00018730903122242","url":null,"abstract":"This article gives an overview of both theoretical and experimental developments concerning states with lattice symmetry breaking in the cuprate high-temperature superconductors. Recent experiments have provided evidence for states with broken rotation as well as translation symmetry, and will be discussed in terms of nematic and stripe physics. Of particular importance here are results obtained using the techniques of neutron and X-ray scattering and scanning tunnelling spectroscopy. Ideas on the origin of lattice-symmetry-broken states will be reviewed, and effective models accounting for various experimentally observed phenomena will be summarized. These include both weak-coupling and strong-coupling approaches, with a discussion of their distinctions and connections. The collected experimental data indicate that the tendency toward uni-directional stripe-like ordering is common to underdoped cuprates, but becomes weaker with increasing number of adjacent CuO2 layers.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2009-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018730903122242","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Two-dimensional matter: order, curvature and defects","authors":"M. Bowick, L. Giomi","doi":"10.1080/00018730903043166","DOIUrl":"https://doi.org/10.1080/00018730903043166","url":null,"abstract":"Many systems in nature and the synthetic world involve ordered arrangements of units on two-dimensional surfaces. We review here the fundamental role payed by both the topology of the underlying surface and its Gaussian curvature. Topology dictates certain broad features of the defect structure of the ground state but curvature-driven energetics control the detailed structure of the ordered phases. Among the surprises are the appearance in the ground state of structures that would normally be thermal excitations and thus prohibited at zero temperature. Examples include excess dislocations in the form of grain boundary scars for spherical crystals above a minimal system size, dislocation unbinding for toroidal hexatics, interstitial fractionalization in spherical crystals and the appearance of well-separated disclinations for toroidal crystals. Much of the analysis leads to universal predictions that do not depend on the details of the microscopic interactions that lead to order in the first place. These predictions are subject to test by the many experimental soft- and hard-matter systems that lead to curved ordered structures such as colloidal particles self-assembling on droplets of one liquid in a second liquid. The defects themselves may be functionalized to create ligands with directional bonding. Thus, nano- to meso-scale superatoms may be designed with specific valency for use in building supermolecules and novel bulk materials. Parameters such as particle number, geometrical aspect ratios and anisotropy of elastic moduli permit the tuning of the precise architecture of the superatoms and associated supermolecules. Thus, the field has tremendous potential from both a fundamental and materials science/supramolecular chemistry viewpoint.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018730903043166","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772517","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rapidly rotating atomic gases","authors":"N. Cooper","doi":"10.1080/00018730802564122","DOIUrl":"https://doi.org/10.1080/00018730802564122","url":null,"abstract":"In this article, we review developments in the theory of rapidly rotating degenerate atomic gases. The main focus is on the equilibrium properties of a single-component atomic Bose gas, which (at least at rest) forms a Bose–Einstein condensate. Rotation leads to the formation of quantized vortices which order into a vortex array, in close analogy with the behaviour of superfluid helium. Under conditions of rapid rotation, when the vortex density becomes large, atomic Bose gases offer the possibility to explore the physics of quantized vortices in novel parameter regimes. First, there is an interesting regime in which the vortices become sufficiently dense that their cores, as set by the healing length, start to overlap. In this regime, the theoretical description simplifies, allowing a reduction to single-particle states in the lowest Landau level. Second, one can envisage entering a regime of very high vortex density, when the number of vortices becomes comparable to the number of particles in the gas. In this regime, theory predicts the appearance of a series of strongly correlated phases, which can be viewed as bosonic versions of fractional quantum Hall states. In this article, we describe the equilibrium properties of rapidly rotating atomic Bose gases in both the mean-field and the strongly correlated regimes, and related theoretical developments for Bose gases in lattices, for multi-component Bose gases and for atomic Fermi gases. The current experimental situation and outlook for the future are discussed in light of these theoretical developments.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018730802564122","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. B. Blakie, Ashton S. Bradley, M. Davis, R. Ballagh, C. Gardiner
{"title":"Dynamics and statistical mechanics of ultra-cold Bose gases using c-field techniques","authors":"P. B. Blakie, Ashton S. Bradley, M. Davis, R. Ballagh, C. Gardiner","doi":"10.1080/00018730802564254","DOIUrl":"https://doi.org/10.1080/00018730802564254","url":null,"abstract":"We review phase-space techniques based on the Wigner representation that provide an approximate description of dilute ultra-cold Bose gases. In this approach the quantum field evolution can be represented using equations of motion of a similar form to the Gross–Pitaevskii equation but with stochastic modifications that include quantum effects in a controlled degree of approximation. These techniques provide a practical quantitative description of both equilibrium and dynamical properties of Bose gas systems. We develop versions of the formalism appropriate at zero temperature, where quantum fluctuations can be important, and at finite temperature where thermal fluctuations dominate. The numerical techniques necessary for implementing the formalism are discussed in detail, together with methods for extracting observables of interest. Numerous applications to a wide range of phenomena are presented.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018730802564254","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Heat transport in low-dimensional systems","authors":"A. Dhar","doi":"10.1080/00018730802538522","DOIUrl":"https://doi.org/10.1080/00018730802538522","url":null,"abstract":"Recent results on theoretical studies of heat conduction in low-dimensional systems are presented. These studies are on simple, yet non-trivial, models. Most of these are classical systems, but some quantum-mechanical work is also reported. Much of the work has been on lattice models corresponding to phononic systems, and some on hard-particle and hard-disc systems. A recently developed approach, using generalized Langevin equations and phonon Green's functions, is explained and several applications to harmonic systems are given. For interacting systems, various analytic approaches based on the Green–Kubo formula are described, and their predictions are compared with the latest results from simulation. These results indicate that for momentum-conserving systems, transport is anomalous in one and two dimensions, and the thermal conductivity κ diverges with system size L as κ ∼ L α. For one-dimensional interacting systems there is strong numerical evidence for a universal exponent α = 1/3, but there is no exact proof for this so far. A brief discussion of some of the experiments on heat conduction in nanowires and nanotubes is also given.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018730802538522","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Spin currents and spin superfluidity","authors":"E. Sonin","doi":"10.1080/00018731003739943","DOIUrl":"https://doi.org/10.1080/00018731003739943","url":null,"abstract":"The present review analyses and compares various types of dissipationless spin transport: (1) Superfluid transport, when the spin-current state is a metastable state (a local but not the absolute minimum in the parameter space). (2) Ballistic spin transport, when spin is transported without losses simply because the sources of dissipation are very weak. (3) Equilibrium spin currents, i.e. genuine persistent currents. (4) Spin currents in the spin Hall effect. Since superfluidity is frequently connected with Bose condensation, recent debates about magnon Bose condensation are also reviewed. For any type of spin currents simplest models were chosen for discussion in order to concentrate on concepts rather than the details of numerous models. The various hurdles on the way of using the concept of spin current (absence of the spin-conservation law, ambiguity of spin current definition, etc.) were analysed. The final conclusion is that the spin-current concept can be developed in a fully consistent manner, and is a useful language for the description of various phenomena in spin dynamics.","PeriodicalId":7373,"journal":{"name":"Advances in Physics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2008-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/00018731003739943","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"58772594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}