N. S. Zhiltsov, G. S. Kurskiev, V. A. Solovey, E. E. Tkachenko, S. Yu. Tolstyakov, I. M. Balachenkov, N. N. Bakharev, V. I. Varfolomeev, A. V. Voronin, V. K. Gusev, V. Yu. Goryainov, V. V. D’yachenko, N. V. Ermakov, A. A. Kavin, E. O. Kiselev, A. N. Konovalov, S. V. Krikunov, V. B. Minaev, A. B. Mineev, I. V. Miroshnikov, E. E. Mukhin, A. N. Novokhatsky, M. I. Patrov, Yu. V. Petrov, A. M. Ponomarenko, N. V. Sakharov, O. M. Skrekel’, V. V. Solokha, A. Yu. Telnova, V. A. Tokarev, E. A. Tukhmeneva, S. V. Filippov, N. A. Khromov, P. B. Shchegolev, K. D. Shulyatiev, A. Yu. Yashin
{"title":"Distinctive Features of Measuring Te and ne Spatial Distributions in the Globus-M2 Spherical Tokamak Using Method of Thomson Scattering of Laser Radiation","authors":"N. S. Zhiltsov, G. S. Kurskiev, V. A. Solovey, E. E. Tkachenko, S. Yu. Tolstyakov, I. M. Balachenkov, N. N. Bakharev, V. I. Varfolomeev, A. V. Voronin, V. K. Gusev, V. Yu. Goryainov, V. V. D’yachenko, N. V. Ermakov, A. A. Kavin, E. O. Kiselev, A. N. Konovalov, S. V. Krikunov, V. B. Minaev, A. B. Mineev, I. V. Miroshnikov, E. E. Mukhin, A. N. Novokhatsky, M. I. Patrov, Yu. V. Petrov, A. M. Ponomarenko, N. V. Sakharov, O. M. Skrekel’, V. V. Solokha, A. Yu. Telnova, V. A. Tokarev, E. A. Tukhmeneva, S. V. Filippov, N. A. Khromov, P. B. Shchegolev, K. D. Shulyatiev, A. Yu. Yashin","doi":"10.1134/S1063780X24600099","DOIUrl":"10.1134/S1063780X24600099","url":null,"abstract":"<p>The results of measuring the electron temperature and density spatial distributions in plasma of the Globus-M2 tokamak using the Thomson scattering diagnostics are presented. The diagnostics provides measurements throughout the entire tokamak discharge, starting from time of gas breakdown. The Thomson scattering data were analyzed in order to determine the positions of the last closed flux surface, the plasma magnetic axis, and the radius of inversion during the saw-tooth oscillations. The results of measurements performed during the internal reconnection of magnetic field lines are presents, as well as the dynamics of spatial distributions of electron temperature, density and pressure during the plasma transition to the H-mode. The results of measuring the electron temperature distribution in the scrape-off layer using the Thomson scattering diagnostics are also presented for distances up to 4 cm outside the last closed flux surface.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 3","pages":"310 - 321"},"PeriodicalIF":0.9,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. N. Kolokoltsev, V. Ya. Nikulin, P. V. Silin, I. V. Borovitskaya, E. N. Peregudova, A. I. Gaidar, L. I. Kobeleva, A. M. Mezrin, A. A. Eriskin
{"title":"Deposition of Thin Refractory-Metal-Films onto Glasses through Diaphragms at Plasma Focus Facility","authors":"V. N. Kolokoltsev, V. Ya. Nikulin, P. V. Silin, I. V. Borovitskaya, E. N. Peregudova, A. I. Gaidar, L. I. Kobeleva, A. M. Mezrin, A. A. Eriskin","doi":"10.1134/S1063780X24600178","DOIUrl":"10.1134/S1063780X24600178","url":null,"abstract":"<p>The results of experiments are presented on the deposition onto silicate glasses of thin refractory-metal-films: molybdenum, tantalum and tungsten. The technique used for manufacturing films was based on the deposition of metal-containing plasma formed when exposing the surface of foils made of refractory metals to high-power plasma and ion pulses. For generation of such pulses, the facility of plasma focus type was used, which makes it possible to obtain ion beams and plasma flows with the energy flux density in the range of 10<sup>10</sup>–10<sup>12</sup> W/cm<sup>2</sup>. The most intense central part of the ion-plasma flow was separated using metal di-aphragms with aperture diameters of 2.5, 3.5, and 4.5 mm. Metal Mo, Ta and W films with dimensions of ∅3–5 mm were obtained on the surfaces of glasses. Metal films are characterized by good adhesion, since they coalesce with the glass surface. It was discovered that the planarity of films becomes violated due to the drift of molten metal particles under the glass surface. The relief of films is non-uniform, which can be explained by the presence of micrometer-sized metal particles in the plasma flow.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 3","pages":"342 - 349"},"PeriodicalIF":0.9,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. N. Bogachev, I. L. Bogdankevich, S. E. Andreev, N. G. Gusein-zade, M. S. Usachonak
{"title":"Effect of the Method of Excitation of the Plasma Antenna on the Spectral Characteristics of the Radiated Signal","authors":"N. N. Bogachev, I. L. Bogdankevich, S. E. Andreev, N. G. Gusein-zade, M. S. Usachonak","doi":"10.1134/S1063780X24600166","DOIUrl":"10.1134/S1063780X24600166","url":null,"abstract":"<p>The radiation of signal by the plasma asymmetrical dipole antenna is studied for two methods of its excitation. Earlier, it was shown that the 2nd and 3rd harmonics of the input signal frequency in the radiation spectrum of the plasma antenna are 10–20 dB stronger than those of a metal antenna with the same geometry. In this work, we study experimentally and by computer simulations the effect of the method of excitation of the plasma asymmetrical dipole antenna on the spectral characteristics of the signal that it radiates. For the two excitation methods of the antenna, through an electrode and through a coaxial coupler, it was shown that the strength of the signal components at the frequency of the radiated signal and its multiple harmonics is different. The introduction of the coaxial coupler in the antenna excitation scheme allowed us to improve the coupling at the input signal frequency and decrease its components at the 2nd and 3rd harmonics. For the plasma antenna with the coaxial coupler, the difference between the 1st and 2nd harmonics was increased by almost 6 dB, and between the 1st and the 3rd ones by almost 20 dB compared to the antenna excitation scheme through the electrode.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 3","pages":"373 - 379"},"PeriodicalIF":0.9,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K. N. Kornev, A. A. Logunov, O. S. Surkont, T. R. Abushaev, A. L. Volynets, S. A. Dvinin
{"title":"A Microwave Discharge in High-Velocity Flows Initiated by a Half-Wave Antenna","authors":"K. N. Kornev, A. A. Logunov, O. S. Surkont, T. R. Abushaev, A. L. Volynets, S. A. Dvinin","doi":"10.1134/S1063780X24600129","DOIUrl":"10.1134/S1063780X24600129","url":null,"abstract":"<p>A microwave discharge in high-velocity (150–250 m/s) air flows induced on a half-wave vibrator is studied. A cw magnetron microwave generator with a frequency of 2.45 GHz and an output power of up to 5 kW was used for initiation of the microwave discharge. The high-speed video imaging was used for studying the discharge structure, determining the diameter and length of the plasma channel as a function of flow velocity and pressure. Electron concentration and temperature, along with characteristic gas temperature, were determined based on the optical spectra. The possibility of using this microwave discharge for ignition of hydrocarbon–air mixtures in combustion chambers of ramjet engines is proved experimentally.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 3","pages":"388 - 396"},"PeriodicalIF":0.9,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141060967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. A. Vershkov, D. V. Sarychev, D. A. Shelukhin, A. R. Nemets, S. V. Mirnov, I. E. Lyublinski, A. V. Vertkov, M. Yu. Zharkov
{"title":"Use of Lithium Capillary Structures in Ohmic Discharges of T-10 Tokamak","authors":"V. A. Vershkov, D. V. Sarychev, D. A. Shelukhin, A. R. Nemets, S. V. Mirnov, I. E. Lyublinski, A. V. Vertkov, M. Yu. Zharkov","doi":"10.1134/S1063780X2460021X","DOIUrl":"10.1134/S1063780X2460021X","url":null,"abstract":"<p>The results of experiments at the T-10 tokamak using lithium capillary-porous structures are presented. It is shown that lithium sputtering under conditions of graphite diaphragms can significantly reduce deuterium recycling and the level of impurities in the plasma. At the same time, recycling increases significantly five discharges after the start of the day of the experiment, and the effect of reducing the level of impurities persists for 150–300 discharges. The results of using a capillary-porous structure with lithium filling as a movable rail diaphragm in the T-10 configuration with tungsten main diaphragms are presented. The introduction of a lithium diaphragm into the SOL region makes it possible to reduce recycling and obtain discharges with an effective plasma charge approaching unity. In this case, the effect increases as the lithium sputtered in the chamber is accumulated. It is shown experimentally that a capillary-porous structure with lithium filling can be used as a main diaphragm with longitudinal plasma heat fluxes up to 3.6 MW/m<sup>2</sup>. However, a necessary condition is the complete impregnation of the porous structure with lithium and the prevention of extrusion of lithium into the discharge as a result of the interaction of the current flowing to the diaphragm with the toroidal magnetic field. Experiments have shown that to obtain discharges with a small lithium admixture, a strong gas injection of deuterium or impurity is required to reduce the temperature of the plasma periphery and effective cooling of the diaphragm below 450°C. Otherwise, the diaphragm transfers into a strong evaporation mode with high lithium flows, which lead to a significant increase in the lithium concentration in the plasma. Strong evaporation reduces the heat inflow and stabilizes the diaphragm temperature.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 3","pages":"283 - 309"},"PeriodicalIF":0.9,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1134/S1063780X2460021X.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141061146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. V. Siasko, T. V. Gurkova, M. V. Balabas, Yu. B. Golubovskii
{"title":"About the Current Flow in a Discharge Tube with a Metal Section. Analysis of the Thermal Balance","authors":"A. V. Siasko, T. V. Gurkova, M. V. Balabas, Yu. B. Golubovskii","doi":"10.1134/S1063780X23602018","DOIUrl":"10.1134/S1063780X23602018","url":null,"abstract":"<p>The work describes the possibility of using a conducting fluid model (single-fluid model) to analyze physical phenomena observed in the inhomogeneous gas discharge plasma. A technique for calculation of the heat fluxes and temperature fields in a discharge in a cylindrical glass tube with metal sections is proposed. The presence of metal sections leads to a change in the thermal balance in the plasma volume. Specific calculations have been carried out for conditions with significantly different thermal conductivity coefficients of gases (argon and helium) and metals (steel and copper). Two cases of the discharge state—diffuse and constricted—are considered. Spatial distributions of heat sources, temperature fields and heat fluxes depending on the gas type, and discharge tube configuration are presented. The considered discharge configuration and the proposed calculation method can be useful for practical applications, for example, in laser physics.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 3","pages":"350 - 357"},"PeriodicalIF":0.9,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. K. H. Auluck, V. I. Krauz, V. V. Myalton, A. M. Kharrasov
{"title":"Investigation of the Poloidal Magnetic Flux at the PF-3 Plasma Focus within the Framework of the Program of Laboratory Simulation of Astrophysical Jets","authors":"S. K. H. Auluck, V. I. Krauz, V. V. Myalton, A. M. Kharrasov","doi":"10.1134/S1063780X23601943","DOIUrl":"10.1134/S1063780X23601943","url":null,"abstract":"<p>Astrophysical jets are collimated plasma outflows observed in diverse astrophysical settings covering seven decades of spatial scale and twenty decades of power, which, nevertheless, share many common features. This similarity over wide range of scales indicates a common core of physics underlying this phenomenon, leading to considerable interest in observational, theoretical and numerical studies. Laboratory astrophysics experiments for simulating astrophysical jets are premised on this common core of physics responsible for multi-scale similarity of jets remaining valid down to laboratory spatial scales of millimeters. Jets formed after the disassembly of the non-cylindrical Z-pinch formed in a plasma focus installation have recently been subjects of observational studies. They offer an important complementarity to the main lines of investigations in two respects. Firstly, the multi-faceted role of gravity, radiation, nuclear reactions and related astrophysics is eliminated retaining only a rapid implosion of a compact plasma object in a magnetohydrodynamic environment as a common feature. Secondly, observations can be made using techniques of laboratory plasma diagnostics. In this paper, we report preliminary results regarding presence of poloidal magnetic flux associated with the jets lasting long after the pinch disassembly. This is significant in the context of uncertainty regarding the origin of poloidal magnetic field postulated in several MHD models of astrophysical jet phenomena. Evidence indicating presence of a radial component of electric field suggests existence of plasma rotation as well. These results suggest that more refined experiments can provide insights into the astrophysical jetting phenomena not available from observational astronomy techniques.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 3","pages":"358 - 372"},"PeriodicalIF":0.9,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Collisional Mechanism of Expanding Wavenumbers Range of Weibel-Type Instability in Magnetoactive Plasma","authors":"N. A. Emelyanov, V. V. Kocharovsky","doi":"10.1134/S1063780X23602067","DOIUrl":"10.1134/S1063780X23602067","url":null,"abstract":"<p>For plasma with anisotropic velocity distribution of particles in the form of two counter-propagating bi-Maxwellian beams, including bi-Maxwellian plasma, in the presence of external magnetic field parallel to the beams, it is shown that in a wide range of parameters, particle collisions lead to the expansion of the wavenumbers range, generally towards the long-wavelength region, and weaken the conditions for the occurrence of the Weibel-type instability. In the specified expanded range, its growth rate, found by means of solving the dispersion equation for the wave vectors orthogonal to the external magnetic field, turns out to be less than or on the order of the frequency of particle collisions. Thus, in this range of parameters, the instability development and formation of large-scale magnetic turbulence in a plasma with weak particle collisions require the long-term injection of particles with anisotropic velocity distribution.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 2","pages":"199 - 205"},"PeriodicalIF":0.9,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140609731","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analytical Theory of Reflection of Hydrogen Isotopes of Thermonuclear Energies from Construction Materials","authors":"V. P. Afanas’ev, L. G. Lobanova","doi":"10.1134/S1063780X2360202X","DOIUrl":"10.1134/S1063780X2360202X","url":null,"abstract":"<p>A theoretical description of reflection of hydrogen isotopes from a solid body based on data available in modern literature on the cross sections for elastic and inelastic scattering of ions is presented. The results of the analytical calculation are compared with the results of computer simulation and experimental data. The interaction of hydrogen isotopes with energies from 300 eV to 25 keV with materials in a wide range of atomic numbers, namely Be, C, Ti, Ni, W, Au, is considered. A critical review of existing analytical models of multiple scattering of light ions in solids is performed.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 2","pages":"247 - 254"},"PeriodicalIF":0.9,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140613559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. R. Kayumov, A. I. Kuputdinova, D. N. Mirkhanov, Al. F. Gaisin
{"title":"Electrical Discharge between a Metal Cathode and a Liquid Non-Metal Anode","authors":"R. R. Kayumov, A. I. Kuputdinova, D. N. Mirkhanov, Al. F. Gaisin","doi":"10.1134/S1063780X2360192X","DOIUrl":"10.1134/S1063780X2360192X","url":null,"abstract":"<p>Gas-discharge plasma generated between a metal cathode and a liquid non-metal anode at atmospheric pressure was studied. The discharge was ignited by submerging the metal electrode in the electrolyte. The types and shapes of the plasma structures generated in the interelectrode gap were considered, as well as their electrophysical parameters. The results of the thermographic analysis of the electrode surface are presented during the burning of the discharge. Emission spectroscopy was used to study the plasma composition, the electron density, and the temperature of the heavy component.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"50 1","pages":"115 - 121"},"PeriodicalIF":0.9,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140881742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}