A. I. Smolyakov, A. Sabo, S. I. Krasheninnikov, P. N. Yushmanov
{"title":"Electromagnetic and Centrifugal Effects on Plasma Acceleration in the Magnetic Nozzle","authors":"A. I. Smolyakov, A. Sabo, S. I. Krasheninnikov, P. N. Yushmanov","doi":"10.1134/S1063780X25602214","DOIUrl":null,"url":null,"abstract":"<p>Plasma flow and acceleration in the converging-diverging magnetic field configuration, such as magnetic nozzle in electric propulsion and open magnetic mirrors for fusion applications are considered. This work analyses plasma acceleration in the magnetic nozzle with an emphasis on the electromagnetic effects and centrifugal forces due to plasma rotation. Intrinsic coupling of the azimuthal rotation and azimuthal magnetic field is analyzed, and additional plasma acceleration due to the conversion of the energy of the azimuthal magnetic field and azimuthal rotation is demonstrated. For large expansion in the diverging magnetic field plasma flow velocities may approach and exceed the Alfvén velocity. In these regimes, stationary solutions for the transonic and trans-Alfvénic flows have been obtained that demonstrate the existence of the unique regular solution passing through all critical points within the MHD theory, i.e., the points where the plasma flow is equal to the signal velocities of the MHD modes: slow and fast magnetohydrodynamic waves and Alfvén wave. The time-dependent initial value simulations show that stationary equilibrium flows are robust and stable, so that time-dependent solutions converge toward stationary solutions.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":"51 4","pages":"427 - 438"},"PeriodicalIF":1.1000,"publicationDate":"2025-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics Reports","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063780X25602214","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma flow and acceleration in the converging-diverging magnetic field configuration, such as magnetic nozzle in electric propulsion and open magnetic mirrors for fusion applications are considered. This work analyses plasma acceleration in the magnetic nozzle with an emphasis on the electromagnetic effects and centrifugal forces due to plasma rotation. Intrinsic coupling of the azimuthal rotation and azimuthal magnetic field is analyzed, and additional plasma acceleration due to the conversion of the energy of the azimuthal magnetic field and azimuthal rotation is demonstrated. For large expansion in the diverging magnetic field plasma flow velocities may approach and exceed the Alfvén velocity. In these regimes, stationary solutions for the transonic and trans-Alfvénic flows have been obtained that demonstrate the existence of the unique regular solution passing through all critical points within the MHD theory, i.e., the points where the plasma flow is equal to the signal velocities of the MHD modes: slow and fast magnetohydrodynamic waves and Alfvén wave. The time-dependent initial value simulations show that stationary equilibrium flows are robust and stable, so that time-dependent solutions converge toward stationary solutions.
期刊介绍:
Plasma Physics Reports is a peer reviewed journal devoted to plasma physics. The journal covers the following topics: high-temperature plasma physics related to the problem of controlled nuclear fusion based on magnetic and inertial confinement; physics of cosmic plasma, including magnetosphere plasma, sun and stellar plasma, etc.; gas discharge plasma and plasma generated by laser and particle beams. The journal also publishes papers on such related topics as plasma electronics, generation of radiation in plasma, and plasma diagnostics. As well as other original communications, the journal publishes topical reviews and conference proceedings.