{"title":"Evaluating Sisal Fiber-Reinforced Gypsum Composites for Water Absorption and Mechanical Performance","authors":"Kidane Hadgu Asefa, Temesgen Abrha Tkue, Temesgen Berhanu Yallew","doi":"10.1155/2024/8864064","DOIUrl":"https://doi.org/10.1155/2024/8864064","url":null,"abstract":"There has been a great research interest for investigation of new construction materials which can reduce environmental impact and cost, with improved structural performance. Recently, sisal fiber is being used as a reinforcement material in the development of reinforced composites. Here, sisal fiber-gypsum reinforced composites were prepared using the hand lay-up method followed by the compression technique. The effects of weight percentage (Wt. %) of the sisal fiber reinforcement on the mechanical properties of the developed sisal fiber-gypsum composites were investigated experimentally by varying the Wt. % as 5, 10, and 15%. The mechanical properties were tested as per the ASTM standards. The results revealed that the long unidirectional sisal fiber-gypsum composites exhibited higher impact and hardness strengths with lower water absorption behaviour than the short-chopped sisal fiber-gypsum composites. In addition, the impact strength increased with increase in Wt. % for both short-chopped and long unidirectional sisal fiber reinforcement. While the hardness strength decreased with increase in Wt. % for both short-chopped and long unidirectional sisal fiber. The experimental investigation has established sisal fiber as an important reinforcement material for improving the performance of the neat gypsum in a wide range of architectural applications such as ceilings, decorative partitions, and light covers.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141172676","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Extraction and Characterization of Cellulose from Coffee Husk and Brewery’s Spent Grain Fibers Using Alkali-Hydrogen Peroxide Treatment Method","authors":"Yoobsan Ejeta Amensisa, Hundessa Dessalegn Demsash, Muluken Eshetu Tefera","doi":"10.1155/2024/5101871","DOIUrl":"https://doi.org/10.1155/2024/5101871","url":null,"abstract":"Coffee husk (CH) and brewery spent grain (BSG) fibers are sustainable industrial residues that consist of cellulose. The present study aimed at the extraction of cellulose from CH and BSG fibers and to study the effect of alkali-hydrogen peroxide (5% NaOH–7% H<sub>2</sub>O<sub>2</sub>) treatment during the extraction by characterizing the extracted cellulose. Characterization of cellulose particles, such as crystallinity, functional groups, thermal properties, and morphology, was conducted by performing X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analyzer (TGA), and scanning electron microscopy (SEM), respectively. The finding shows that the maximum cellulose yields obtained from CH and BSG fibers are 37.3% and 26.5%, respectively. From the XRD results, the cellulose obtained from CH fiber (C-CH) and from BSG fiber (C-BSG) showed diffractive peaks with the highest intensity of approximately 1,003 and 1,236 counted at 2<i>θ</i> = 22°, respectively. A reduction in the absorption of peaks was observed on the FTIR spectrum for both C-BSG and C-CH samples at different wavelengths. SEM demonstrated that the surface roughness of the celluloses was enhanced. TGA showed that the maximum temperature decomposition observed for both C-CH and C-BSG is 360°C and 380°C, respectively. Generally, in this study, alkali-hydrogen peroxide (5% NaOH–7% H<sub>2</sub>O<sub>2</sub>) treatment was effectively used for the treatment of BSG and CH fibers for the extraction and surface modification of cellulose particles. The extracted cellulose in the present study can be used as an alternative to conventional cellulose for the manufacturing of biocomposite materials, preparation of particle boards and furniture, and production of food packaging materials.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"16 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141152642","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
C. Manikandan, B. Rajeswari, D. Mohan, R. M. Aravind
{"title":"Multiobjective Optimization of Hard Turning on OHNS Steel Using Desirability and TOPSIS Approaches","authors":"C. Manikandan, B. Rajeswari, D. Mohan, R. M. Aravind","doi":"10.1155/2024/9921066","DOIUrl":"https://doi.org/10.1155/2024/9921066","url":null,"abstract":"Machining hard materials with 45–48 HRC is difficult in turning operation because of the improvident cutting parameter selections for the operation. The OHNS (AISI/SAE-01–48HRC) steel is mainly preferred for the production of shafts, gears, cams, and press tools. The OHNS material was turned at a dry state using VP-coated carbide inserts. The seventeen experimental trials were designed by central composite design (CCD) with different levels of cutting parameters, like feed rate, cutting speed, and depth of cut. Design Expert-11 software desirability approach and TOPSIS (Technique for Order Preference by Simulating the Ideal Solution) were used to analyse the experimental results to obtain a single optimal solution that defines better results on metal removal rate (MRR) and surface finish (Ra). RSM solution with 81.3% desirability, the cutting speed of 60 m/min, feed rate of 0.08 mm/rev, and depth of cut 1 mm as the optimal cutting parameters; similarly, TOPSIS algorithm calculation identifies the cutting parameter combinations, such as 40 m/min cutting speed, 0.09 mm/rev feed rate, and 1 mm depth cut to enrich the quality of the machined steel; however, the desirability approach cutting parameter setting is better for the surface finish achievement, while TOPSIS solution is better to obtain significant MRR. The confirmation test results validated for the predicted values of both approaches; as such, the experimental results were maintained better convenience than the predicted one. For the optimum cutting parameter combinations, an MRR of 22.032 gm/min and surface roughness of 0.781 μm were obtained at 60 m/min cutting speed, 0.08 mm/rev feed rate, and 1 mm depth of cut.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"52 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing Communication Reliability: Designing Microwave Links for Bahir Dar-Woretta Connectivity","authors":"Gashaw Mihretu Adega","doi":"10.1155/2024/6535616","DOIUrl":"https://doi.org/10.1155/2024/6535616","url":null,"abstract":"This paper explores the need for establishing a microwave link between Bahir Dar and Woretta as an alternative communication solution to the existing optical fiber infrastructure. Microwave links offer an effective way to overcome challenges posed by rugged terrains and unfavorable environmental conditions that hinder the deployment of fiber optics. As Woretta emerges as a key economic and investment hub within the Amhara Region, demand for reliable and efficient communication is expected to grow significantly. The study encompasses various aspects of planning and designing the microwave link, including site surveys, consideration of fade margins, frequency planning, link budget calculations, and assessing the feasibility and reliability of the proposed link. The paper employs LINKPlanner 5.4.1 software to simulate and validate the results. Due to terrain constraints, a direct link between Bahir Dar and Woretta is not feasible. Instead, a two-hop link is proposed, involving transmission from Bahir Dar to Zege, and then from Zege to Woretta. This alternative configuration ensures optimal connectivity while addressing the terrain limitations. By presenting a comprehensive analysis and simulation of the microwave link, this paper provides valuable insights into the planning and implementation of a robust communication infrastructure. The proposed microwave link will offer a reliable and efficient alternative to the existing optical fiber network, ensuring uninterrupted connectivity to support the region’s growth and development.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"16 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141122330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Adib Bin Rashid, Mahima Haque, S. M. Mohaimenul Islam, K. M. Rafi Uddin Labib, Pavel Chowdhury
{"title":"Breaking Boundaries with Ceramic Matrix Composites: A Comprehensive Overview of Materials, Manufacturing Techniques, Transformative Applications, Recent Advancements, and Future Prospects","authors":"Adib Bin Rashid, Mahima Haque, S. M. Mohaimenul Islam, K. M. Rafi Uddin Labib, Pavel Chowdhury","doi":"10.1155/2024/2112358","DOIUrl":"https://doi.org/10.1155/2024/2112358","url":null,"abstract":"Ceramic matrix composites (CMCs) are a category of advanced materials which have gained significant interest recently due to their remarkable mechanical and thermal characteristics. These composites are composed of ceramic fibers, particles, or other types of ceramics incorporated in a ceramic matrix and have shown the capability to be implemented in several sectors, including aerospace, energy, and biomedical engineering. This review paper will provide a synopsis of the current scenario and recent progress in CMCs, including materials and processing techniques, characterization methods, and applications. The paper discusses the advantages and limitations of CMCs, recent advancements, and future trends in research. The microstructural and mechanical properties of CMCs are also reviewed, highlighting their potential for various applications. The paper’s conclusion delivers a summary of the essential findings and a discussion of future directions for CMC research.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"66 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141058598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dehenenet Flatie Tassw, Tamrat Tesfaye, Murugesh Babu K.
{"title":"Preparation and Characterization of Protein-Based Hydrogel: Cottonseed Protein Grafted with 2-Acrylamido-2-Methylpropanesulfonic Acid (AMPS)","authors":"Dehenenet Flatie Tassw, Tamrat Tesfaye, Murugesh Babu K.","doi":"10.1155/2024/6783165","DOIUrl":"https://doi.org/10.1155/2024/6783165","url":null,"abstract":"Using synthetic polymers in the production of superabsorbent polymers offers significant advantages such as low cost, extended service life, and a high water absorption rate. However, concerns about the environmental impact and potential adverse effects on plant growth arise from the degradation products of these polymers after disposal. In addition, handling these polymers can cause rashes, irritations, and even toxic shock syndrome. To overcome these issues, researchers are exploring the synthesis of superabsorbent polymers from natural sources. Cottonseed protein is identified as a potential natural polymer for the synthesis of natural superabsorbent polymers. Notably, there is no existing research on hydrogel synthesis using cottonseed protein and 2-acrylamido-2-methylpropanesulfonic acid (AMPS). This study addresses this gap by focusing on modifying cottonseed protein (CSP) through graft copolymerization, utilizing the partially neutralized form of 2-acrylamido-2-methylpropanesulfonic acid (AMPS) in a water-based solution. N,N-methylene bisacrylamide serves as the crosslinking agent, while potassium persulfate (PPS) and sodium bisulfite (SBS) function as redox initiators. The optimization of hydrogel synthesis conditions was achieved using Design Expert-11 software, adjusting the AMPS to CSP ratio. The research reveals that the hydrogel reaches its maximum swelling capacity (195.7 g/g) with 0.03 g of MBA, 0.01 g of PPS, 0.01 g of SBS, and a 1wt% AMPS to CSP ratio. Swelling properties were assessed under diverse pH conditions, and the study delved into swelling kinetics (both pseudo-first-order model and pseudo-second-order model) and performance under different loads. Grafting evidence was validated through FTIR analysis. The maximum water uptake was obtained when there was no load, and the pH value was around neutral (7). In conclusion, the results indicate that the developed hydrogel holds a promise for applications in water retention, reducing water loss, and serving as an environment-friendly, biocompatible superabsorbent polymer so we can use such hydrogel in biomedical applications.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"156 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140931139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Liu PeiRong, Yang LiMing, Huang Jun, Li ChaoYang, Yang DaTian
{"title":"Testing and Evaluation of Hard Sandstone Aggregate in Hot Mix Asphalt","authors":"Liu PeiRong, Yang LiMing, Huang Jun, Li ChaoYang, Yang DaTian","doi":"10.1155/2024/2395548","DOIUrl":"https://doi.org/10.1155/2024/2395548","url":null,"abstract":"To address the shortage of the aggregate used in a hot mix asphalt (HMA) pavement in Guangxi, properties such as the aggregate crushing, polished stone, and Los Angeles abrasion values of a type of hard sandstone aggregate used in HMA were tested after various conditioning treatments. The hard sandstone aggregate met the technical requirements for aggregate in HMA. In addition, the influence of the Marshall compaction on the hard sandstone aggregate-combined grading was tested. The combined grading curve changed a little, and the aggregate satisfied the corresponding technical requirements. Therefore, according to the abovementioned results, the hard sandstone aggregate can be used as a coarse aggregate in HMA.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Carbonation Resistance of Cement-Based Materials Improved by Nitrite","authors":"Hao Zhang, Luqing Cheng, Jingsheng Pan, Guodong Xu, Xuyan Shen, Song Mu, Jingshun Cai, Jianzhong Liu, Jinxiang Hong, Zhiqiang Yang, Zhonglai Yi, Huajian Li, Ying Zhou","doi":"10.1155/2024/8895736","DOIUrl":"https://doi.org/10.1155/2024/8895736","url":null,"abstract":"Carbonation resistance ability is one of the most important durability-related proprieties of cement-based materials. Through the carbonation depth experiment, isothermal conduction calorimetry, XRD, BET, and water vapor sorption, the effect of calcium nitrite (Ca(NO<sub>3</sub>)<sub>2</sub>) on the carbonation properties of cement-based materials is obtained. The result indicates that the addition of Ca(NO<sub>3</sub>)<sub>2</sub> improves the carbonation resistance property of cement-based materials if the hydration of cement pastes and microstructure is modified earlier without affecting the late hydration process. In addition, the refined pores and higher tortuosity cut down the channels, thereby impeding the ingress of carbon dioxide gas into cementitious materials, as confirmed by BET and water vapor sorption. The Ca(NO<sub>3</sub>)<sub>2</sub> exhibits high performance in improving the carbonation resistance and extending the life of strengthened concrete.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"118 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140889072","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Synthesis, Characterization, and Photocatalytic Activity of Cu-Doped MgO Nanoparticles on Degradation of Methyl Orange (MO)","authors":"Mebrihit Fissaha Gebreaneniya, Goitom Gebreyohannes Berhe, Tesfamariam Teklu","doi":"10.1155/2024/9969064","DOIUrl":"https://doi.org/10.1155/2024/9969064","url":null,"abstract":"The purpose of this study is to synthesize Cu-doped MgO nanoparticles and test the performance of photocatalytic degradation of methyl orange (MO). Mg(NO<sub>3</sub>)<sub>2</sub>, CuCl<sub>2,</sub> NaOH, and fresh <i>Calotropis procera</i> leaf extract were used as precursors. The prepared nanoparticles were characterized by using FT-IR, XRD, SEM, and UV-Vis spectrometer to study the functional group, crystal structure, surface morphology, and absorption edge, respectively. The wide band above 3000 cm<sup>−1</sup> from the FT-IR spectrum corresponds to the stretching vibrations of flavonoids and phenolic compounds of <i>Calotropis procera</i> leaf extract. Furthermore, the Mg-O bonding of undoped MgO and Cu-doped MgO NPs is represented by new peaks which appeared at 831 and 835 cm<sup>−1</sup>, respectively. The crystal size of undoped MgO and Cu-doped MgO nanoparticles is 13.04 nm and 12.08 nm, respectively. The SEM microstructure of pure MgO showed higher agglomeration than the Cu-doped MgO nanoparticles. The degradation efficiency of the Cu-doped MgO NPs was compared with that of the MgO NPs, and the photocatalytic activity of these NPs was evaluated using the photocatalytic degradation rates of MO dye. Cu-doped MgO NPs showed higher degradation efficiency than pure MgO NPs. The insertion of Cu in the MgO structure improved the photocatalytic efficiency of the MgO NPs under optimal conditions. Therefore, Cu-doped MgO exhibits high photocatalytic activity compared with undoped MgO nanoparticles under sunlight irradiation.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Water Absorption, Thermal, and Mechanical Properties of Bamboo Fiber with Chopped Glass Fiber Filler-Reinforced Polyester Composites","authors":"Mohammed Abdulkedir Alfeki, Ephrem Assefa Feyissa","doi":"10.1155/2024/6262251","DOIUrl":"https://doi.org/10.1155/2024/6262251","url":null,"abstract":"This study explores the investigations of bamboo fiber-reinforced polyester composites with chopped glass fiber (CGF) filler, focusing on addressing the challenges of low mechanical properties, limited thermal stability, and high moisture absorption. The two types of composites were fabricated using the hand layup method, that is, long unidirectional 0° bamboo fiber (BF) and randomly oriented short bamboo fiber (BP) reinforced a polyester matrix with chopped glass fiber (CGF) filler. By incorporating CGF filler, significant improvements in mechanical properties were achieved across both types of bamboo fiber, surpassing the limitations of unfilled composites. Notably, the composite formulation consisting of 40% wt. of unidirectional 0° BF and 5% wt. of CGF filler exhibited superior ultimate tensile strength, flexural strength, impact strength, water absorption, and thermal stability. This composite demonstrated remarkable enhancements, with increases of up to 131.22 MPa, 128.76 MPa, 113.3 kJ/m<sup>2</sup>, 1.94% water absorption, and up to 255°C (representing a 10% improvement) in thermal stability compared to the unfilled composite. Statistical analysis revealed quadratic models for the mechanical properties of long unidirectional 0° bamboo fiber composites, while water absorption exhibited a linear two-factor interaction model. For randomly oriented short bamboo fiber, the models for tensile, flexural, and water absorption properties were linear, while the impact energy model showed a quadratic relationship. These statistical models provide valuable insights into predicting the properties of bamboo fiber-reinforced polyester composites. This research underscores the significance of bamboo fiber-reinforced polyester composites in wall partition systems. This study paves the way for improved performance in these areas. The findings highlight the potential of incorporating CGF filler, enabling enhanced mechanical strength, increased thermal stability, and improved resistance to moisture-related issues. The derived statistical models offer valuable guidance for predicting the properties of these composites, facilitating their application and adoption in the construction industry.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"48 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140835715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}