Breaking Boundaries with Ceramic Matrix Composites: A Comprehensive Overview of Materials, Manufacturing Techniques, Transformative Applications, Recent Advancements, and Future Prospects

4区 材料科学 Q2 Engineering
Adib Bin Rashid, Mahima Haque, S. M. Mohaimenul Islam, K. M. Rafi Uddin Labib, Pavel Chowdhury
{"title":"Breaking Boundaries with Ceramic Matrix Composites: A Comprehensive Overview of Materials, Manufacturing Techniques, Transformative Applications, Recent Advancements, and Future Prospects","authors":"Adib Bin Rashid, Mahima Haque, S. M. Mohaimenul Islam, K. M. Rafi Uddin Labib, Pavel Chowdhury","doi":"10.1155/2024/2112358","DOIUrl":null,"url":null,"abstract":"Ceramic matrix composites (CMCs) are a category of advanced materials which have gained significant interest recently due to their remarkable mechanical and thermal characteristics. These composites are composed of ceramic fibers, particles, or other types of ceramics incorporated in a ceramic matrix and have shown the capability to be implemented in several sectors, including aerospace, energy, and biomedical engineering. This review paper will provide a synopsis of the current scenario and recent progress in CMCs, including materials and processing techniques, characterization methods, and applications. The paper discusses the advantages and limitations of CMCs, recent advancements, and future trends in research. The microstructural and mechanical properties of CMCs are also reviewed, highlighting their potential for various applications. The paper’s conclusion delivers a summary of the essential findings and a discussion of future directions for CMC research.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/2112358","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Ceramic matrix composites (CMCs) are a category of advanced materials which have gained significant interest recently due to their remarkable mechanical and thermal characteristics. These composites are composed of ceramic fibers, particles, or other types of ceramics incorporated in a ceramic matrix and have shown the capability to be implemented in several sectors, including aerospace, energy, and biomedical engineering. This review paper will provide a synopsis of the current scenario and recent progress in CMCs, including materials and processing techniques, characterization methods, and applications. The paper discusses the advantages and limitations of CMCs, recent advancements, and future trends in research. The microstructural and mechanical properties of CMCs are also reviewed, highlighting their potential for various applications. The paper’s conclusion delivers a summary of the essential findings and a discussion of future directions for CMC research.
打破陶瓷基复合材料的界限:材料、制造技术、变革性应用、最新进展和未来前景的全面概述
陶瓷基复合材料(CMC)是一类先进材料,由于其显著的机械和热特性,最近受到了广泛关注。这些复合材料由陶瓷纤维、颗粒或其他类型的陶瓷组成,并融入陶瓷基体中,已显示出在航空航天、能源和生物医学工程等多个领域的应用能力。本综述文件将简要介绍 CMC 的现状和最新进展,包括材料和加工技术、表征方法和应用。本文将讨论 CMC 的优势和局限性、最新进展以及未来的研究趋势。论文还回顾了 CMC 的微结构和机械性能,强调了它们在各种应用中的潜力。论文的结论部分总结了主要研究成果,并讨论了 CMC 研究的未来方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Materials Science and Engineering
Advances in Materials Science and Engineering Materials Science-General Materials Science
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to: -Chemistry and fundamental properties of matter -Material synthesis, fabrication, manufacture, and processing -Magnetic, electrical, thermal, and optical properties of materials -Strength, durability, and mechanical behaviour of materials -Consideration of materials in structural design, modelling, and engineering -Green and renewable materials, and consideration of materials’ life cycles -Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信