Carbonation Resistance of Cement-Based Materials Improved by Nitrite

4区 材料科学 Q2 Engineering
Hao Zhang, Luqing Cheng, Jingsheng Pan, Guodong Xu, Xuyan Shen, Song Mu, Jingshun Cai, Jianzhong Liu, Jinxiang Hong, Zhiqiang Yang, Zhonglai Yi, Huajian Li, Ying Zhou
{"title":"Carbonation Resistance of Cement-Based Materials Improved by Nitrite","authors":"Hao Zhang, Luqing Cheng, Jingsheng Pan, Guodong Xu, Xuyan Shen, Song Mu, Jingshun Cai, Jianzhong Liu, Jinxiang Hong, Zhiqiang Yang, Zhonglai Yi, Huajian Li, Ying Zhou","doi":"10.1155/2024/8895736","DOIUrl":null,"url":null,"abstract":"Carbonation resistance ability is one of the most important durability-related proprieties of cement-based materials. Through the carbonation depth experiment, isothermal conduction calorimetry, XRD, BET, and water vapor sorption, the effect of calcium nitrite (Ca(NO<sub>3</sub>)<sub>2</sub>) on the carbonation properties of cement-based materials is obtained. The result indicates that the addition of Ca(NO<sub>3</sub>)<sub>2</sub> improves the carbonation resistance property of cement-based materials if the hydration of cement pastes and microstructure is modified earlier without affecting the late hydration process. In addition, the refined pores and higher tortuosity cut down the channels, thereby impeding the ingress of carbon dioxide gas into cementitious materials, as confirmed by BET and water vapor sorption. The Ca(NO<sub>3</sub>)<sub>2</sub> exhibits high performance in improving the carbonation resistance and extending the life of strengthened concrete.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/8895736","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Carbonation resistance ability is one of the most important durability-related proprieties of cement-based materials. Through the carbonation depth experiment, isothermal conduction calorimetry, XRD, BET, and water vapor sorption, the effect of calcium nitrite (Ca(NO3)2) on the carbonation properties of cement-based materials is obtained. The result indicates that the addition of Ca(NO3)2 improves the carbonation resistance property of cement-based materials if the hydration of cement pastes and microstructure is modified earlier without affecting the late hydration process. In addition, the refined pores and higher tortuosity cut down the channels, thereby impeding the ingress of carbon dioxide gas into cementitious materials, as confirmed by BET and water vapor sorption. The Ca(NO3)2 exhibits high performance in improving the carbonation resistance and extending the life of strengthened concrete.
亚硝酸盐改善水泥基材料的抗碳化性能
抗碳化能力是水泥基材料最重要的耐久性能之一。通过碳化深度实验、等温导热法、X射线衍射、BET和水蒸气吸附等方法,研究了亚硝酸钙(Ca(NO3)2)对水泥基材料碳化性能的影响。结果表明,在不影响后期水化过程的前提下,如果提前改变水泥浆体的水化过程和微观结构,则亚硝酸钙(Ca(NO3)2)的添加可改善水泥基材料的抗碳化性能。此外,细化的孔隙和更高的迂回度减少了通道,从而阻碍了二氧化碳气体进入水泥基材料,这一点已被 BET 和水蒸气吸附所证实。Ca(NO3)2 在提高强化混凝土的抗碳化能力和延长其使用寿命方面表现出了很高的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Materials Science and Engineering
Advances in Materials Science and Engineering Materials Science-General Materials Science
CiteScore
3.30
自引率
0.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to: -Chemistry and fundamental properties of matter -Material synthesis, fabrication, manufacture, and processing -Magnetic, electrical, thermal, and optical properties of materials -Strength, durability, and mechanical behaviour of materials -Consideration of materials in structural design, modelling, and engineering -Green and renewable materials, and consideration of materials’ life cycles -Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信